Winter Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpt65

Professional-Machine-Learning-Engineer Questions and Answers

Question # 6

You are developing models to classify customer support emails. You created models with TensorFlow Estimators using small datasets on your on-premises system, but you now need to train the models using large datasets to ensure high performance. You will port your models to Google Cloud and want to minimize code refactoring and infrastructure overhead for easier migration from on-prem to cloud. What should you do?

A.

Use Vertex Al Platform for distributed training

B.

Create a cluster on Dataproc for training

C.

Create a Managed Instance Group with autoscaling

D.

Use Kubeflow Pipelines to train on a Google Kubernetes Engine cluster.

Full Access
Question # 7

You work for an organization that operates a streaming music service. You have a custom production model that is serving a "next song" recommendation based on a user’s recent listening history. Your model is deployed on a Vertex Al endpoint. You recently retrained the same model by using fresh data. The model received positive test results offline. You now want to test the new model in production while minimizing complexity. What should you do?

A.

Create a new Vertex Al endpoint for the new model and deploy the new model to that new endpoint Build a service to randomly send 5% of production traffic to the new endpoint Monitor end-user metrics such as listening time If end-user metrics improve between models over time gradually increase the percentage of production traffic sent to the new endpoint.

B.

Capture incoming prediction requests in BigQuery Create an experiment in Vertex Al Experiments Run batch predictions for both models using the captured data Use the user's selected song to compare the models performance side by side If the new models performance metrics are better than the previous model deploy the new model to production.

C.

Deploy the new model to the existing Vertex Al endpoint Use traffic splitting to send 5% of production traffic to the new model Monitor end-user metrics, such as listening time If end-user metrics improve between models over time, gradually increase the percentage of production traffic sent to the new model.

D.

Configure a model monitoring job for the existing Vertex Al endpoint. Configure the monitoring job to detect prediction drift, and set a threshold for alerts Update the model on the endpoint from the previous model to the new model If you receive an alert of prediction drift, revert to the previous model.

Full Access
Question # 8

You need to train a natural language model to perform text classification on product descriptions that contain millions of examples and 100,000 unique words. You want to preprocess the words individually so that they can be fed into a recurrent neural network. What should you do?

A.

Create a hot-encoding of words, and feed the encodings into your model.

B.

Identify word embeddings from a pre-trained model, and use the embeddings in your model.

C.

Sort the words by frequency of occurrence, and use the frequencies as the encodings in your model.

D.

Assign a numerical value to each word from 1 to 100,000 and feed the values as inputs in your model.

Full Access
Question # 9

You are using Keras and TensorFlow to develop a fraud detection model Records of customer transactions are stored in a large table in BigQuery. You need to preprocess these records in a cost-effective and efficient way before you use them to train the model. The trained model will be used to perform batch inference in BigQuery. How should you implement the preprocessing workflow?

A.

Implement a preprocessing pipeline by using Apache Spark, and run the pipeline on Dataproc Save the preprocessed data as CSV files in a Cloud Storage bucket.

B.

Load the data into a pandas DataFrame Implement the preprocessing steps using panda’s transformations. and train the model directly on the DataFrame.

C.

Perform preprocessing in BigQuery by using SQL Use the BigQueryClient in TensorFlow to read the data directly from BigQuery.

D.

Implement a preprocessing pipeline by using Apache Beam, and run the pipeline on Dataflow Save the preprocessed data as CSV files in a Cloud Storage bucket.

Full Access
Question # 10

You work for an international manufacturing organization that ships scientific products all over the world Instruction manuals for these products need to be translated to 15 different languages Your organization's leadership team wants to start using machine learning to reduce the cost of manual human translations and increase translation speed. You need to implement a scalable solution that maximizes accuracy and minimizes operational overhead. You also want to include a process to evaluate and fix incorrect translations. What should you do?

A.

Create a workflow using Cloud Function Triggers Configure a Cloud Function that is triggered when documents are uploaded to an input Cloud Storage bucket Configure another Cloud Function that translates the documents using the Cloud Translation API and saves the translations to an output Cloud Storage bucket Use human reviewers to evaluate the incorrect translations.

B.

Create a Vertex Al pipeline that processes the documents1 launches an AutoML Translation training job evaluates the translations, and deploys the model to a Vertex Al endpoint with autoscaling and model monitoring When there is a predetermined skew between training and live data re-trigger the pipeline with the latest data.

C.

Use AutoML Translation to tram a model Configure a Translation Hub project and use the trained model to translate the documents Use human reviewers to evaluate the incorrect translations

D.

Use Vertex Al custom training jobs to fine-tune a state-of-the-art open source pretrained model with your data Deploy the model to a Vertex Al endpoint with autoscaling and model monitoring When there is a predetermined skew between the training and live data, configure a trigger to run another training job with the latest data.

Full Access
Question # 11

You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects. Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?

A.

AutoML Vision model

B.

AutoML Vision Edge mobile-versatile-1 model

C.

AutoML Vision Edge mobile-low-latency-1 model

D.

AutoML Vision Edge mobile-high-accuracy-1 model

Full Access
Question # 12

You work for a magazine distributor and need to build a model that predicts which customers will renew their subscriptions for the upcoming year. Using your company’s historical data as your training set, you created a TensorFlow model and deployed it to AI Platform. You need to determine which customer attribute has the most predictive power for each prediction served by the model. What should you do?

A.

Use AI Platform notebooks to perform a Lasso regression analysis on your model, which will eliminate features that do not provide a strong signal.

B.

Stream prediction results to BigQuery. Use BigQuery’s CORR(X1, X2) function to calculate the Pearson correlation coefficient between each feature and the target variable.

C.

Use the AI Explanations feature on AI Platform. Submit each prediction request with the ‘explain’ keyword to retrieve feature attributions using the sampled Shapley method.

D.

Use the What-If tool in Google Cloud to determine how your model will perform when individual features are excluded. Rank the feature importance in order of those that caused the most significant performance drop when removed from the model.

Full Access
Question # 13

Your team is training a large number of ML models that use different algorithms, parameters and datasets. Some models are trained in Vertex Ai Pipelines, and some are trained on Vertex Al Workbench notebook instances. Your team wants to compare the performance of the models across both services. You want to minimize the effort required to store the parameters and metrics What should you do?

A.

Implement an additional step for all the models running in pipelines and notebooks to export parameters and metrics to BigQuery.

B.

Create a Vertex Al experiment Submit all the pipelines as experiment runs. For models trained on notebooks log parameters and metrics by using the Vertex Al SDK.

C.

Implement all models in Vertex Al Pipelines Create a Vertex Al experiment, and associate all pipeline runs with that experiment.

D.

Store all model parameters and metrics as mode! metadata by using the Vertex Al Metadata API.

Full Access
Question # 14

You recently used XGBoost to train a model in Python that will be used for online serving Your model prediction service will be called by a backend service implemented in Golang running on a Google Kubemetes Engine (GKE) cluster Your model requires pre and postprocessing steps You need to implement the processing steps so that they run at serving time You want to minimize code changes and infrastructure maintenance and deploy your model into production as quickly as possible. What should you do?

A.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server and deploy it on your organization's GKE cluster.

B.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server Upload the image to Vertex Al Model Registry and deploy it to a Vertex Al endpoint.

C.

Use the Predictor interface to implement a custom prediction routine Build the custom contain upload the container to Vertex Al Model Registry, and deploy it to a Vertex Al endpoint.

D.

Use the XGBoost prebuilt serving container when importing the trained model into Vertex Al Deploy the model to a Vertex Al endpoint Work with the backend engineers to implement the pre- and postprocessing steps in the Golang backend service.

Full Access
Question # 15

You need to quickly build and train a model to predict the sentiment of customer reviews with custom categories without writing code. You do not have enough data to train a model from scratch. The resulting model should have high predictive performance. Which service should you use?

A.

AutoML Natural Language

B.

Cloud Natural Language API

C.

AI Hub pre-made Jupyter Notebooks

D.

AI Platform Training built-in algorithms

Full Access
Question # 16

You recently created a new Google Cloud Project After testing that you can submit a Vertex Al Pipeline job from the Cloud Shell, you want to use a Vertex Al Workbench user-managed notebook instance to run your code from that instance You created the instance and ran the code but this time the job fails with an insufficient permissions error. What should you do?

A.

Ensure that the Workbench instance that you created is in the same region of the Vertex Al Pipelines resources you will use.

B.

Ensure that the Vertex Al Workbench instance is on the same subnetwork of the Vertex Al Pipeline resources that you will use.

C.

Ensure that the Vertex Al Workbench instance is assigned the Identity and Access Management (1AM) Vertex Al User rote.

D.

Ensure that the Vertex Al Workbench instance is assigned the Identity and Access Management (1AM) Notebooks Runner role.

Full Access
Question # 17

You work for a manufacturing company. You need to train a custom image classification model to detect product defects at the end of an assembly line Although your model is performing well some images in your holdout set are consistently mislabeled with high confidence You want to use Vertex Al to understand your model's results What should you do?

A.

B.

C.

D.

Full Access
Question # 18

You work on a growing team of more than 50 data scientists who all use Al Platform. You are designing a strategy to organize your jobs, models, and versions in a clean and scalable way. Which strategy should you choose?

A.

Set up restrictive I AM permissions on the Al Platform notebooks so that only a single user or group can access a given instance.

B.

Separate each data scientist's work into a different project to ensure that the jobs, models, and versions created by each data scientist are accessible only to that user.

C.

Use labels to organize resources into descriptive categories. Apply a label to each created resource so that users can filter the results by label when viewing or monitoring the resources

D.

Set up a BigQuery sink for Cloud Logging logs that is appropriately filtered to capture information about Al Platform resource usage In BigQuery create a SQL view that maps users to the resources they are using.

Full Access
Question # 19

You work with a data engineering team that has developed a pipeline to clean your dataset and save it in a Cloud Storage bucket. You have created an ML model and want to use the data to refresh your model as soon as new data is available. As part of your CI/CD workflow, you want to automatically run a Kubeflow Pipelines training job on Google Kubernetes Engine (GKE). How should you architect this workflow?

A.

Configure your pipeline with Dataflow, which saves the files in Cloud Storage After the file is saved, start the training job on a GKE cluster

B.

Use App Engine to create a lightweight python client that continuously polls Cloud Storage for new files As soon as a file arrives, initiate the training job

C.

Configure a Cloud Storage trigger to send a message to a Pub/Sub topic when a new file is available in a storage bucket. Use a Pub/Sub-triggered Cloud Function to start the training job on a GKE cluster

D.

Use Cloud Scheduler to schedule jobs at a regular interval. For the first step of the job. check the timestamp of objects in your Cloud Storage bucket If there are no new files since the last run, abort the job.

Full Access
Question # 20

You are collaborating on a model prototype with your team. You need to create a Vertex Al Workbench environment for the members of your team and also limit access to other employees in your project. What should you do?

A.

1. Create a new service account and grant it the Notebook Viewer role.

2 Grant the Service Account User role to each team member on the service account.

3 Grant the Vertex Al User role to each team member.

4. Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

B.

1. Grant the Vertex Al User role to the default Compute Engine service account.

2. Grant the Service Account User role to each team member on the default Compute Engine service account.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the default Compute Engine service account.

C.

1 Create a new service account and grant it the Vertex Al User role.

2 Grant the Service Account User role to each team member on the service account.

3. Grant the Notebook Viewer role to each team member.

4 Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

D.

1 Grant the Vertex Al User role to the primary team member.

2. Grant the Notebook Viewer role to the other team members.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the primary user’s account.

Full Access
Question # 21

You need to train a regression model based on a dataset containing 50,000 records that is stored in BigQuery. The data includes a total of 20 categorical and numerical features with a target variable that can include negative values. You need to minimize effort and training time while maximizing model performance. What approach should you take to train this regression model?

A.

Create a custom TensorFlow DNN model.

B.

Use BQML XGBoost regression to train the model

C.

Use AutoML Tables to train the model without early stopping.

D.

Use AutoML Tables to train the model with RMSLE as the optimization objective

Full Access
Question # 22

You need to analyze user activity data from your company’s mobile applications. Your team will use BigQuery for data analysis, transformation, and experimentation with ML algorithms. You need to ensure real-time ingestion of the user activity data into BigQuery. What should you do?

A.

Configure Pub/Sub to stream the data into BigQuery.

B.

Run an Apache Spark streaming job on Dataproc to ingest the data into BigQuery.

C.

Run a Dataflow streaming job to ingest the data into BigQuery.

D.

Configure Pub/Sub and a Dataflow streaming job to ingest the data into BigQuery,

Full Access
Question # 23

You work for a company that manages a ticketing platform for a large chain of cinemas. Customers use a mobile app to search for movies they’re interested in and purchase tickets in the app. Ticket purchase requests are sent to Pub/Sub and are processed with a Dataflow streaming pipeline configured to conduct the following steps:

1. Check for availability of the movie tickets at the selected cinema.

2. Assign the ticket price and accept payment.

3. Reserve the tickets at the selected cinema.

4. Send successful purchases to your database.

Each step in this process has low latency requirements (less than 50 milliseconds). You have developed a logistic regression model with BigQuery ML that predicts whether offering a promo code for free popcorn increases the chance of a ticket purchase, and this prediction should be added to the ticket purchase process. You want to identify the simplest way to deploy this model to production while adding minimal latency. What should you do?

A.

Run batch inference with BigQuery ML every five minutes on each new set of tickets issued.

B.

Export your model in TensorFlow format, and add a tfx_bsl.public.beam.RunInference step to the Dataflow pipeline.

C.

Export your model in TensorFlow format, deploy it on Vertex AI, and query the prediction endpoint from your streaming pipeline.

D.

Convert your model with TensorFlow Lite (TFLite), and add it to the mobile app so that the promo code and the incoming request arrive together in Pub/Sub.

Full Access
Question # 24

Your team has been tasked with creating an ML solution in Google Cloud to classify support requests for one of your platforms. You analyzed the requirements and decided to use TensorFlow to build the classifier so that you have full control of the model's code, serving, and deployment. You will use Kubeflow pipelines for the ML platform. To save time, you want to build on existing resources and use managed services instead of building a completely new model. How should you build the classifier?

A.

Use the Natural Language API to classify support requests

B.

Use AutoML Natural Language to build the support requests classifier

C.

Use an established text classification model on Al Platform to perform transfer learning

D.

Use an established text classification model on Al Platform as-is to classify support requests

Full Access
Question # 25

You are pre-training a large language model on Google Cloud. This model includes custom TensorFlow operations in the training loop Model training will use a large batch size, and you expect training to take several weeks You need to configure a training architecture that minimizes both training time and compute costs What should you do?

A.

B.

C.

D.

Full Access
Question # 26

You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.

What should you do?

A.

Download a pretrained convolutional neural network, and fine-tune the model to predict hashtags based on the input images. Use the predicted hashtags to make recommendations.

B.

Retrieve image labels and dominant colors from the input images using the Vision API. Use these properties and the hashtags to make recommendations.

C.

Use the provided hashtags to create a collaborative filtering algorithm to make recommendations.

D.

Download a pretrained convolutional neural network, and use the model to generate embeddings of the input images. Measure similarity between embeddings to make recommendations.

Full Access
Question # 27

You need to execute a batch prediction on 100 million records in a BigQuery table with a custom TensorFlow DNN regressor model, and then store the predicted results in a BigQuery table. You want to minimize the effort required to build this inference pipeline. What should you do?

A.

Import the TensorFlow model with BigQuery ML, and run the ml.predict function.

B.

Use the TensorFlow BigQuery reader to load the data, and use the BigQuery API to write the results to BigQuery.

C.

Create a Dataflow pipeline to convert the data in BigQuery to TFRecords. Run a batch inference on Vertex AI Prediction, and write the results to BigQuery.

D.

Load the TensorFlow SavedModel in a Dataflow pipeline. Use the BigQuery I/O connector with a custom function to perform the inference within the pipeline, and write the results to BigQuery.

Full Access
Question # 28

You are developing an ML model that uses sliced frames from video feed and creates bounding boxes around specific objects. You want to automate the following steps in your training pipeline: ingestion and preprocessing of data in Cloud Storage, followed by training and hyperparameter tuning of the object model using Vertex AI jobs, and finally deploying the model to an endpoint. You want to orchestrate the entire pipeline with minimal cluster management. What approach should you use?

A.

Use Kubeflow Pipelines on Google Kubernetes Engine.

B.

Use Vertex AI Pipelines with TensorFlow Extended (TFX) SDK.

C.

Use Vertex AI Pipelines with Kubeflow Pipelines SDK.

D.

Use Cloud Composer for the orchestration.

Full Access
Question # 29

You are developing an ML model in a Vertex Al Workbench notebook. You want to track artifacts and compare models during experimentation using different approaches. You need to rapidly and easily transition successful experiments to production as you iterate on your model implementation. What should you do?

A.

1 Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, and attach dataset and model artifacts as inputs and outputs to each execution.

2 After a successful experiment create a Vertex Al pipeline.

B.

1. Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, save your dataset to a Cloud Storage bucket and upload the models to Vertex Al Model Registry.

2 After a successful experiment create a Vertex Al pipeline.

C.

1 Create a Vertex Al pipeline with parameters you want to track as arguments to your Pipeline Job Use the Metrics. Model, and Dataset artifact types from the Kubeflow Pipelines DSL as the inputs and outputs of the components in your pipeline.

2. Associate the pipeline with your experiment when you submit the job.

D.

1 Create a Vertex Al pipeline Use the Dataset and Model artifact types from the Kubeflow Pipelines. DSL as the inputs and outputs of the components in your pipeline.

2. In your training component use the Vertex Al SDK to create an experiment run Configure the log_params and log_metrics functions to track parameters and metrics of your experiment.

Full Access
Question # 30

You are an ML engineer at a regulated insurance company. You are asked to develop an insurance approval model that accepts or rejects insurance applications from potential customers. What factors should you consider before building the model?

A.

Redaction, reproducibility, and explainability

B.

Traceability, reproducibility, and explainability

C.

Federated learning, reproducibility, and explainability

D.

Differential privacy federated learning, and explainability

Full Access
Question # 31

You work for a public transportation company and need to build a model to estimate delay times for multiple transportation routes. Predictions are served directly to users in an app in real time. Because different seasons and population increases impact the data relevance, you will retrain the model every month. You want to follow Google-recommended best practices. How should you configure the end-to-end architecture of the predictive model?

A.

Configure Kubeflow Pipelines to schedule your multi-step workflow from training to deploying your model.

B.

Use a model trained and deployed on BigQuery ML and trigger retraining with the scheduled query feature in BigQuery

C.

Write a Cloud Functions script that launches a training and deploying job on Ai Platform that is triggered by Cloud Scheduler

D.

Use Cloud Composer to programmatically schedule a Dataflow job that executes the workflow from training to deploying your model

Full Access
Question # 32

You need to deploy a scikit-learn classification model to production. The model must be able to serve requests 24/7 and you expect millions of requests per second to the production application from 8 am to 7 pm. You need to minimize the cost of deployment What should you do?

A.

Deploy an online Vertex Al prediction endpoint Set the max replica count to 1

B.

Deploy an online Vertex Al prediction endpoint Set the max replica count to 100

C.

Deploy an online Vertex Al prediction endpoint with one GPU per replica Set the max replica count to 1.

D.

Deploy an online Vertex Al prediction endpoint with one GPU per replica Set the max replica count to 100.

Full Access
Question # 33

You are a data scientist at an industrial equipment manufacturing company. You are developing a regression model to estimate the power consumption in the company’s manufacturing plants based on sensor data collected from all of the plants. The sensors collect tens of millions of records every day. You need to schedule daily training runs for your model that use all the data collected up to the current date. You want your model to scale smoothly and require minimal development work. What should you do?

A.

Develop a custom TensorFlow regression model, and optimize it using Vertex Al Training.

B.

Develop a regression model using BigQuery ML.

C.

Develop a custom scikit-learn regression model, and optimize it using Vertex Al Training

D.

Develop a custom PyTorch regression model, and optimize it using Vertex Al Training

Full Access
Question # 34

You work for a retail company. You have been asked to develop a model to predict whether a customer will purchase a product on a given day. Your team has processed the company's sales data, and created a table with the following rows:

• Customer_id

• Product_id

• Date

• Days_since_last_purchase (measured in days)

• Average_purchase_frequency (measured in 1/days)

• Purchase (binary class, if customer purchased product on the Date)

You need to interpret your models results for each individual prediction. What should you do?

A.

Create a BigQuery table Use BigQuery ML to build a boosted tree classifier Inspect the partition rules of the trees to understand how each prediction flows through the trees.

B.

Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model

to a Vertex Al endpoint and enable feature attributions Use the "explain" method to get feature attribution values for each individual prediction.

C.

Create a BigQuery table Use BigQuery ML to build a logistic regression classification model Use the values of the coefficients of the model to interpret the feature importance with higher values corresponding to more importance.

D.

Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model to a Vertex Al endpoint. At each prediction enable L1 regularization to detect non-informative features.

Full Access
Question # 35

Your company stores a large number of audio files of phone calls made to your customer call center in an on-premises database. Each audio file is in wav format and is approximately 5 minutes long. You need to analyze these audio files for customer sentiment. You plan to use the Speech-to-Text API. You want to use the most efficient approach. What should you do?

A.

1 Upload the audio files to Cloud Storage

2. Call the speech: Iongrunningrecognize API endpoint to generate transcriptions

3. Call the predict method of an AutoML sentiment analysis model to analyze the transcriptions

B.

1 Upload the audio files to Cloud Storage

2 Call the speech: Iongrunningrecognize API endpoint to generate transcriptions.

3 Create a Cloud Function that calls the Natural Language API by using the analyzesentiment method

C.

1 Iterate over your local Tiles in Python

2. Use the Speech-to-Text Python library to create a speech.RecognitionAudio object and set the content to the audio file data

3. Call the speech: recognize API endpoint to generate transcriptions

4. Call the predict method of an AutoML sentiment analysis model to analyze the transcriptions

D.

1 Iterate over your local files in Python

2 Use the Speech-to-Text Python Library to create a speech.RecognitionAudio object, and set the content to the audio file data

3. Call the speech: lengrunningrecognize API endpoint to generate transcriptions

4 Call the Natural Language API by using the analyzesenriment method

Full Access
Question # 36

You are an ML engineer at a manufacturing company. You need to build a model that identifies defects in products based on images of the product taken at the end of the assembly line. You want your model to preprocess the images with lower computation to quickly extract features of defects in products. Which approach should you use to build the model?

A.

Reinforcement learning

B.

Recommender system

C.

Recurrent Neural Networks (RNN)

D.

Convolutional Neural Networks (CNN)

Full Access
Question # 37

You are tasked with building an MLOps pipeline to retrain tree-based models in production. The pipeline will include components related to data ingestion, data processing, model training, model evaluation, and model deployment. Your organization primarily uses PySpark-based workloads for data preprocessing. You want to minimize infrastructure management effort. How should you set up the pipeline?

A.

Set up a TensorFlow Extended (TFX) pipeline on Vertex Al Pipelines to orchestrate the MLOps pipeline. Write a custom component for the PySpark-based workloads on Dataproc.

B.

Set up a Vertex Al Pipelines to orchestrate the MLOps pipeline. Use the predefined Dataproc component for the PySpark-based workloads.

C.

Set up Cloud Composer to orchestrate the MLOps pipeline. Use Dataproc workflow templates for the PySpark-based workloads in Cloud Composer.

D.

Set up Kubeflow Pipelines on Google Kubernetes Engine to orchestrate the MLOps pipeline. Write a custom component for the PySpark-based workloads on Dataproc.

Full Access
Question # 38

You are analyzing customer data for a healthcare organization that is stored in Cloud Storage. The data contains personally identifiable information (PII) You need to perform data exploration and preprocessing while ensuring the security and privacy of sensitive fields What should you do?

A.

Use the Cloud Data Loss Prevention (DLP) API to de-identify the PI! before performing data exploration and preprocessing.

B.

Use customer-managed encryption keys (CMEK) to encrypt the Pll data at rest and decrypt the Pll data during data exploration and preprocessing.

C.

Use a VM inside a VPC Service Controls security perimeter to perform data exploration and preprocessing.

D.

Use Google-managed encryption keys to encrypt the Pll data at rest, and decrypt the Pll data during data exploration and preprocessing.

Full Access
Question # 39

You work for an online retailer. Your company has a few thousand short lifecycle products. Your company has five years of sales data stored in BigQuery. You have been asked to build a model that will make monthly sales predictions for each product. You want to use a solution that can be implemented quickly with minimal effort. What should you do?

A.

Use Prophet on Vertex Al Training to build a custom model.

B.

Use Vertex Al Forecast to build a NN-based model.

C.

Use BigQuery ML to build a statistical AR1MA_PLUS model.

D.

Use TensorFlow on Vertex Al Training to build a custom model.

Full Access
Question # 40

You are training a Resnet model on Al Platform using TPUs to visually categorize types of defects in automobile engines. You capture the training profile using the Cloud TPU profiler plugin and observe that it is highly input-bound. You want to reduce the bottleneck and speed up your model training process. Which modifications should you make to the tf .data dataset?

Choose 2 answers

A.

Use the interleave option for reading data

B.

Reduce the value of the repeat parameter

C.

Increase the buffer size for the shuffle option.

D.

Set the prefetch option equal to the training batch size

E.

Decrease the batch size argument in your transformation

Full Access
Question # 41

While monitoring your model training’s GPU utilization, you discover that you have a native synchronous implementation. The training data is split into multiple files. You want to reduce the execution time of your input pipeline. What should you do?

A.

Increase the CPU load

B.

Add caching to the pipeline

C.

Increase the network bandwidth

D.

Add parallel interleave to the pipeline

Full Access
Question # 42

You work at an organization that maintains a cloud-based communication platform that integrates conventional chat, voice, and video conferencing into one platform. The audio recordings are stored in Cloud Storage. All recordings have an 8 kHz sample rate and are more than one minute long. You need to implement a new feature in the platform that will automatically transcribe voice call recordings into a text for future applications, such as call summarization and sentiment analysis. How should you implement the voice call transcription feature following Google-recommended best practices?

A.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

B.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

C.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

D.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

Full Access
Question # 43

You are profiling the performance of your TensorFlow model training time and notice a performance issue caused by inefficiencies in the input data pipeline for a single 5 terabyte CSV file dataset on Cloud Storage. You need to optimize the input pipeline performance. Which action should you try first to increase the efficiency of your pipeline?

A.

Preprocess the input CSV file into a TFRecord file.

B.

Randomly select a 10 gigabyte subset of the data to train your model.

C.

Split into multiple CSV files and use a parallel interleave transformation.

D.

Set the reshuffle_each_iteration parameter to true in the tf.data.Dataset.shuffle method.

Full Access
Question # 44

You developed a BigQuery ML linear regressor model by using a training dataset stored in a BigQuery table. New data is added to the table every minute. You are using Cloud Scheduler and Vertex Al Pipelines to automate hourly model training, and use the model for direct inference. The feature preprocessing logic includes quantile bucketization and MinMax scaling on data received in the last hour. You want to minimize storage and computational overhead. What should you do?

A.

Create a component in the Vertex Al Pipelines directed acyclic graph (DAG) to calculate the required statistics, and pass the statistics on to subsequent components.

B.

Preprocess and stage the data in BigQuery prior to feeding it to the model during training and inference.

C.

Create SQL queries to calculate and store the required statistics in separate BigQuery tables that are referenced in the CREATE MODEL statement.

D.

Use the TRANSFORM clause in the CREATE MODEL statement in the SQL query to calculate the required statistics.

Full Access
Question # 45

You work for a bank with strict data governance requirements. You recently implemented a custom model to detect fraudulent transactions You want your training code to download internal data by using an API endpoint hosted in your projects network You need the data to be accessed in the most secure way, while mitigating the risk of data exfiltration. What should you do?

A.

Enable VPC Service Controls for peering’s, and add Vertex Al to a service perimeter

B.

Create a Cloud Run endpoint as a proxy to the data Use Identity and Access Management (1AM)

authentication to secure access to the endpoint from the training job.

C.

Configure VPC Peering with Vertex Al and specify the network of the training job

D.

Download the data to a Cloud Storage bucket before calling the training job

Full Access
Question # 46

You are an ML engineer at a travel company. You have been researching customers’ travel behavior for many years, and you have deployed models that predict customers’ vacation patterns. You have observed that customers’ vacation destinations vary based on seasonality and holidays; however, these seasonal variations are similar across years. You want to quickly and easily store and compare the model versions and performance statistics across years. What should you do?

A.

Store the performance statistics in Cloud SQL. Query that database to compare the performance statistics across the model versions.

B.

Create versions of your models for each season per year in Vertex AI. Compare the performance statistics across the models in the Evaluate tab of the Vertex AI UI.

C.

Store the performance statistics of each pipeline run in Kubeflow under an experiment for each season per year. Compare the results across the experiments in the Kubeflow UI.

D.

Store the performance statistics of each version of your models using seasons and years as events in Vertex ML Metadata. Compare the results across the slices.

Full Access
Question # 47

You work for a rapidly growing social media company. Your team builds TensorFlow recommender models in an on-premises CPU cluster. The data contains billions of historical user events and 100 000 categorical features. You notice that as the data increases the model training time increases. You plan to move the models to Google Cloud You want to use the most scalable approach that also minimizes training time. What should you do?

A.

Deploy the training jobs by using TPU VMs with TPUv3 Pod slices, and use the TPUEmbedding API.

B.

Deploy the training jobs in an autoscaling Google Kubernetes Engine cluster with CPUs

C.

Deploy a matrix factorization model training job by using BigQuery ML.

D.

Deploy the training jobs by using Compute Engine instances with A100 GPUs and use the

t f. nn. embedding_lookup API.

Full Access
Question # 48

You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (Pll) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the Pll is not accessible by unauthorized individuals?

A.

Stream all files to Google CloudT and then write the data to BigQuery Periodically conduct a bulk scan of the table using the DLP API.

B.

Stream all files to Google Cloud, and write batches of the data to BigQuery While the data is being written to BigQuery conduct a bulk scan of the data using the DLP API.

C.

Create two buckets of data Sensitive and Non-sensitive Write all data to the Non-sensitive bucket Periodically conduct a bulk scan of that bucket using the DLP API, and move the sensitive data to the Sensitive bucket

D.

Create three buckets of data: Quarantine, Sensitive, and Non-sensitive Write all data to the Quarantine bucket.

E.

Periodically conduct a bulk scan of that bucket using the DLP API, and move the data to either the Sensitive or Non-Sensitive bucket

Full Access
Question # 49

You are implementing a batch inference ML pipeline in Google Cloud. The model was developed using TensorFlow and is stored in SavedModel format in Cloud Storage You need to apply the model to a historical dataset containing 10 TB of data that is stored in a BigQuery table How should you perform the inference?

A.

Export the historical data to Cloud Storage in Avro format. Configure a Vertex Al batch prediction job to generate predictions for the exported data.

B.

Import the TensorFlow model by using the create model statement in BigQuery ML Apply the historical data to the TensorFlow model.

C.

Export the historical data to Cloud Storage in CSV format Configure a Vertex Al batch prediction job to generate predictions for the exported data.

D.

Configure a Vertex Al batch prediction job to apply the model to the historical data in BigQuery

Full Access
Question # 50

You work for a social media company. You want to create a no-code image classification model for an iOS mobile application to identify fashion accessories You have a labeled dataset in Cloud Storage You need to configure a training workflow that minimizes cost and serves predictions with the lowest possible latency What should you do?

A.

Train the model by using AutoML, and register the model in Vertex Al Model Registry Configure your mobile

application to send batch requests during prediction.

B.

Train the model by using AutoML Edge and export it as a Core ML model Configure your mobile application

to use the mlmodel file directly.

C.

Train the model by using AutoML Edge and export the model as a TFLite model Configure your mobile application to use the tflite file directly

D.

Train the model by using AutoML, and expose the model as a Vertex Al endpoint Configure your mobile application to invoke the endpoint during prediction.

Full Access
Question # 51

You have trained an XGBoost model that you plan to deploy on Vertex Al for online prediction. You are now uploading your model to Vertex Al Model Registry, and you need to configure the explanation method that will serve online prediction requests to be returned with minimal latency. You also want to be alerted when feature attributions of the model meaningfully change over time. What should you do?

A.

1 Specify sampled Shapley as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

B.

1 Specify Integrated Gradients as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

C.

1. Specify sampled Shapley as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

D.

1 Specify Integrated Gradients as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3 Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

Full Access
Question # 52

You are developing an ML model that predicts the cost of used automobiles based on data such as location, condition model type color, and engine-'battery efficiency. The data is updated every night Car dealerships will use the model to determine appropriate car prices. You created a Vertex Al pipeline that reads the data splits the data into training/evaluation/test sets performs feature engineering trains the model by using the training dataset and validates the model by using the evaluation dataset. You need to configure a retraining workflow that minimizes cost What should you do?

A.

Compare the training and evaluation losses of the current run If the losses are similar, deploy the model to a Vertex AI endpoint Configure a cron job to redeploy the pipeline every night.

B.

Compare the training and evaluation losses of the current run If the losses are similar deploy the model to a Vertex Al endpoint with training/serving skew threshold model monitoring When the model monitoring threshold is tnggered redeploy the pipeline.

C.

Compare the results to the evaluation results from a previous run If the performance improved deploy the model to a Vertex Al endpoint Configure a cron job to redeploy the pipeline every night.

D.

Compare the results to the evaluation results from a previous run If the performance improved deploy the model to a Vertex Al endpoint with training/serving skew threshold model monitoring. When the model monitoring threshold is triggered, redeploy the pipeline.

Full Access
Question # 53

You have created a Vertex Al pipeline that automates custom model training You want to add a pipeline component that enables your team to most easily collaborate when running different executions and comparing metrics both visually and programmatically. What should you do?

A.

Add a component to the Vertex Al pipeline that logs metrics to a BigQuery table Query the table to compare different executions of the pipeline Connect BigQuery to Looker Studio to visualize metrics.

B.

Add a component to the Vertex Al pipeline that logs metrics to a BigQuery table Load the table into a pandas DataFrame to compare different executions of the pipeline Use Matplotlib to visualize metrics.

C.

Add a component to the Vertex Al pipeline that logs metrics to Vertex ML Metadata Use Vertex Al Experiments to compare different executions of the pipeline Use Vertex Al TensorBoard to visualize metrics.

D.

Add a component to the Vertex Al pipeline that logs metrics to Vertex ML Metadata Load the Vertex ML Metadata into a pandas DataFrame to compare different executions of the pipeline. Use Matplotlib to visualize metrics.

Full Access
Question # 54

You are designing an ML recommendation model for shoppers on your company's ecommerce website. You will use Recommendations Al to build, test, and deploy your system. How should you develop recommendations that increase revenue while following best practices?

A.

Use the "Other Products You May Like" recommendation type to increase the click-through rate

B.

Use the "Frequently Bought Together' recommendation type to increase the shopping cart size for each order.

C.

Import your user events and then your product catalog to make sure you have the highest quality event stream

D.

Because it will take time to collect and record product data, use placeholder values for the product catalog to test the viability of the model.

Full Access
Question # 55

Your company manages an ecommerce website. You developed an ML model that recommends additional products to users in near real time based on items currently in the user's cart. The workflow will include the following processes.

1 The website will send a Pub/Sub message with the relevant data and then receive a message with the prediction from Pub/Sub.

2 Predictions will be stored in BigQuery

3. The model will be stored in a Cloud Storage bucket and will be updated frequently

You want to minimize prediction latency and the effort required to update the model How should you reconfigure the architecture?

A.

Write a Cloud Function that loads the model into memory for prediction Configure the function to be

triggered when messages are sent to Pub/Sub.

B.

Create a pipeline in Vertex Al Pipelines that performs preprocessing, prediction and postprocessing

Configure the pipeline to be triggered by a Cloud Function when messages are sent to Pub/Sub.

C.

Expose the model as a Vertex Al endpoint Write a custom DoFn in a Dataflow job that calls the endpoint for

prediction.

D.

Use the Runlnference API with watchFilePatterr. in a Dataflow job that wraps around the model and serves predictions.

Full Access
Question # 56

You are responsible for building a unified analytics environment across a variety of on-premises data marts. Your company is experiencing data quality and security challenges when integrating data across the servers, caused by the use of a wide range of disconnected tools and temporary solutions. You need a fully managed, cloud-native data integration service that will lower the total cost of work and reduce repetitive work. Some members on your team prefer a codeless interface for building Extract, Transform, Load (ETL) process. Which service should you use?

A.

Dataflow

B.

Dataprep

C.

Apache Flink

D.

Cloud Data Fusion

Full Access
Question # 57

You received a training-serving skew alert from a Vertex Al Model Monitoring job running in production. You retrained the model with more recent training data, and deployed it back to the Vertex Al endpoint but you are still receiving the same alert. What should you do?

A.

Update the model monitoring job to use a lower sampling rate.

B.

Update the model monitoring job to use the more recent training data that was used to retrain the model.

C.

Temporarily disable the alert Enable the alert again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint.

D.

Temporarily disable the alert until the model can be retrained again on newer training data Retrain the model again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint

Full Access
Question # 58

You work at a gaming startup that has several terabytes of structured data in Cloud Storage. This data includes gameplay time data, user metadata, and game metadata. You want to build a model that recommends new games to users that requires the least amount of coding. What should you do?

A.

Load the data in BigQuery. Use BigQuery ML to train an Autoencoder model.

B.

Load the data in BigQuery. Use BigQuery ML to train a matrix factorization model.

C.

Read data to a Vertex Al Workbench notebook. Use TensorFlow to train a two-tower model.

D.

Read data to a Vertex Al Workbench notebook. Use TensorFlow to train a matrix factorization model.

Full Access
Question # 59

You manage a team of data scientists who use a cloud-based backend system to submit training jobs. This system has become very difficult to administer, and you want to use a managed service instead. The data scientists you work with use many different frameworks, including Keras, PyTorch, theano, scikit-learn, and custom libraries. What should you do?

A.

Use the Vertex AI Training to submit training jobs using any framework.

B.

Configure Kubeflow to run on Google Kubernetes Engine and submit training jobs through TFJob.

C.

Create a library of VM images on Compute Engine, and publish these images on a centralized repository.

D.

Set up Slurm workload manager to receive jobs that can be scheduled to run on your cloud infrastructure.

Full Access
Question # 60

You developed a Transformer model in TensorFlow to translate text Your training data includes millions of documents in a Cloud Storage bucket. You plan to use distributed training to reduce training time. You need to configure the training job while minimizing the effort required to modify code and to manage the clusters configuration. What should you do?

A.

Create a Vertex Al custom training job with GPU accelerators for the second worker pool Use tf .distribute.MultiWorkerMirroredStrategy for distribution.

B.

Create a Vertex Al custom distributed training job with Reduction Server Use N1 high-memory machine type instances for the first and second pools, and use N1 high-CPU machine type instances for the third worker pool.

C.

Create a training job that uses Cloud TPU VMs Use tf.distribute.TPUStrategy for distribution.

D.

Create a Vertex Al custom training job with a single worker pool of A2 GPU machine type instances Use tf .distribute.MirroredStraregy for distribution.

Full Access
Question # 61

You are training an object detection model using a Cloud TPU v2. Training time is taking longer than expected. Based on this simplified trace obtained with a Cloud TPU profile, what action should you take to decrease training time in a cost-efficient way?

A.

Move from Cloud TPU v2 to Cloud TPU v3 and increase batch size.

B.

Move from Cloud TPU v2 to 8 NVIDIA V100 GPUs and increase batch size.

C.

Rewrite your input function to resize and reshape the input images.

D.

Rewrite your input function using parallel reads, parallel processing, and prefetch.

Full Access
Question # 62

You have recently created a proof-of-concept (POC) deep learning model. You are satisfied with the overall architecture, but you need to determine the value for a couple of hyperparameters. You want to perform hyperparameter tuning on Vertex AI to determine both the appropriate embedding dimension for a categorical feature used by your model and the optimal learning rate. You configure the following settings:

For the embedding dimension, you set the type to INTEGER with a minValue of 16 and maxValue of 64.

For the learning rate, you set the type to DOUBLE with a minValue of 10e-05 and maxValue of 10e-02.

You are using the default Bayesian optimization tuning algorithm, and you want to maximize model accuracy. Training time is not a concern. How should you set the hyperparameter scaling for each hyperparameter and the maxParallelTrials?

A.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a large number of parallel trials.

B.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a small number of parallel trials.

C.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a large number of parallel trials.

D.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a small number of parallel trials.

Full Access
Question # 63

You work on the data science team at a manufacturing company. You are reviewing the company's historical sales data, which has hundreds of millions of records. For your exploratory data analysis, you need to calculate descriptive statistics such as mean, median, and mode; conduct complex statistical tests for hypothesis testing; and plot variations of the features over time You want to use as much of the sales data as possible in your analyses while minimizing computational resources. What should you do?

A.

Spin up a Vertex Al Workbench user-managed notebooks instance and import the dataset Use this data to create statistical and visual analyses

B.

Visualize the time plots in Google Data Studio. Import the dataset into Vertex Al Workbench user-managed notebooks Use this data to calculate the descriptive statistics and run the statistical analyses

C.

Use BigQuery to calculate the descriptive statistics. Use Vertex Al Workbench user-managed notebooks to visualize the time plots and run the statistical analyses.

D Use BigQuery to calculate the descriptive statistics, and use Google Data Studio to visualize the time plots. Use Vertex Al Workbench user-managed notebooks to run the statistical analyses.

Full Access
Question # 64

You work for a pet food company that manages an online forum Customers upload photos of their pets on the forum to share with others About 20 photos are uploaded daily You want to automatically and in near real time detect whether each uploaded photo has an animal You want to prioritize time and minimize cost of your application development and deployment What should you do?

A.

Send user-submitted images to the Cloud Vision API Use object localization to identify all objects in the image and compare the results against a list of animals.

B.

Download an object detection model from TensorFlow Hub. Deploy the model to a Vertex Al endpoint. Send new user-submitted images to the model endpoint to classify whether each photo has an animal.

C.

Manually label previously submitted images with bounding boxes around any animals Build an AutoML object detection model by using Vertex Al Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to detect whether each photo has an animal.

D.

Manually label previously submitted images as having animals or not Create an image dataset on Vertex Al Train a classification model by using Vertex AutoML to distinguish the two classes Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to classify whether each photo has an animal.

Full Access
Question # 65

You work for a company that is developing an application to help users with meal planning You want to use machine learning to scan a corpus of recipes and extract each ingredient (e g carrot, rice pasta) and each kitchen cookware (e.g. bowl, pot spoon) mentioned Each recipe is saved in an unstructured text file What should you do?

A.

Create a text dataset on Vertex Al for entity extraction Create two entities called ingredient" and cookware" and label at least 200 examples of each entity Train an AutoML entity extraction model to extract occurrences of these entity types Evaluate performance on a holdout dataset.

B.

Create a multi-label text classification dataset on Vertex Al Create a test dataset and label each recipe that corresponds to its ingredients and cookware Train a multi-class classification model Evaluate the model’s performance on a holdout dataset.

C.

Use the Entity Analysis method of the Natural Language API to extract the ingredients and cookware from each recipe Evaluate the model's performance on a prelabeled dataset.

D.

Create a text dataset on Vertex Al for entity extraction Create as many entities as there are different ingredients and cookware Train an AutoML entity extraction model to extract those entities Evaluate the models performance on a holdout dataset.

Full Access
Question # 66

You work for a semiconductor manufacturing company. You need to create a real-time application that automates the quality control process High-definition images of each semiconductor are taken at the end of the assembly line in real time. The photos are uploaded to a Cloud Storage bucket along with tabular data that includes each semiconductor's batch number serial number dimensions, and weight You need to configure model training and serving while maximizing model accuracy. What should you do?

A.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model.

Deploy the model and configure Pub/Sub to publish a message when an image is categorized into the failing class.

B.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model. Schedule a daily batch prediction job that publishes a Pub/Sub message when the job completes.

C.

Convert the images into an embedding representation Import this data into BigQuery, and train a BigQuery. ML K-means clustenng model with two clusters Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing cluster.

D.

Import the tabular data into BigQuery use Vertex Al Data Labeling Service to label the data and train an AutoML tabular classification model Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing class.

Full Access
Question # 67

You work for an online grocery store. You recently developed a custom ML model that recommends a recipe when a user arrives at the website. You chose the machine type on the Vertex Al endpoint to optimize costs by using the queries per second (QPS) that the model can serve, and you deployed it on a single machine with 8 vCPUs and no accelerators.

A holiday season is approaching and you anticipate four times more traffic during this time than the typical daily traffic You need to ensure that the model can scale efficiently to the increased demand. What should you do?

A.

1, Maintain the same machine type on the endpoint.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert add a compute node to the endpoint

B.

1 Change the machine type on the endpoint to have 32 vCPUs

2. Set up a monitoring job and an alert for CPU usage

3 If you receive an alert, scale the vCPUs further as needed

C.

1 Maintain the same machine type on the endpoint Configure the endpoint to enable autoscalling based on vCPU usage.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert investigate the cause

D.

1 Change the machine type on the endpoint to have a GPU_ Configure the endpoint to enable autoscaling based on the GPU usage.

2 Set up a monitoring job and an alert for GPU usage.

3 If you receive an alert investigate the cause.

Full Access
Question # 68

You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?

A.

Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.

B.

Load the model directly into the Dataflow job as a dependency, and use it for prediction.

C.

Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.

D.

Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.

Full Access
Question # 69

You built a deep learning-based image classification model by using on-premises data. You want to use Vertex Al to deploy the model to production Due to security concerns you cannot move your data to the cloud. You are aware that the input data distribution might change over time You need to detect model performance changes in production. What should you do?

A.

Use Vertex Explainable Al for model explainability Configure feature-based explanations.

B.

Use Vertex Explainable Al for model explainability Configure example-based explanations.

C.

Create a Vertex Al Model Monitoring job. Enable training-serving skew detection for your model.

D.

Create a Vertex Al Model Monitoring job. Enable feature attribution skew and dnft detection for your model.

Full Access
Question # 70

You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?

A.

Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.

B.

In Cloud Logging, create a logs-based alert using the logs in the Vertex Al endpoint. Configure Cloud Logging to send an email when the alert is triggered.

C.

In Cloud Monitoring create a logs-based metric and a threshold alert for the metric. Configure Cloud Monitoring to send an email when the alert is triggered.

D.

Export the container logs of the endpoint to BigQuery Create a Cloud Function to run a SQL query over the exported logs and send an email. Use Cloud Scheduler to trigger the Cloud Function.

Full Access
Question # 71

You have deployed multiple versions of an image classification model on Al Platform. You want to monitor the performance of the model versions overtime. How should you perform this comparison?

A.

Compare the loss performance for each model on a held-out dataset.

B.

Compare the loss performance for each model on the validation data

C.

Compare the receiver operating characteristic (ROC) curve for each model using the What-lf Tool

D.

Compare the mean average precision across the models using the Continuous Evaluation feature

Full Access
Question # 72

You are an ML engineer at a manufacturing company You are creating a classification model for a predictive maintenance use case You need to predict whether a crucial machine will fail in the next three days so that the repair crew has enough time to fix the machine before it breaks. Regular maintenance of the machine is relatively inexpensive, but a failure would be very costly You have trained several binary classifiers to predict whether the machine will fail. where a prediction of 1 means that the ML model predicts a failure.

You are now evaluating each model on an evaluation dataset. You want to choose a model that prioritizes detection while ensuring that more than 50% of the maintenance jobs triggered by your model address an imminent machine failure. Which model should you choose?

A.

The model with the highest area under the receiver operating characteristic curve (AUC ROC) and precision greater than 0 5

B.

The model with the lowest root mean squared error (RMSE) and recall greater than 0.5.

C.

The model with the highest recall where precision is greater than 0.5.

D.

The model with the highest precision where recall is greater than 0.5.

Full Access
Question # 73

You are developing a process for training and running your custom model in production. You need to be able to show lineage for your model and predictions. What should you do?

A.

1 Create a Vertex Al managed dataset

2 Use a Vertex Ai training pipeline to train your model

3 Generate batch predictions in Vertex Al

B.

1 Use a Vertex Al Pipelines custom training job component to train your model

2. Generate predictions by using a Vertex Al Pipelines model batch predict component

C.

1 Upload your dataset to BigQuery

2. Use a Vertex Al custom training job to train your model

3 Generate predictions by using Vertex Al SDK custom prediction routines

D.

1 Use Vertex Al Experiments to train your model.

2 Register your model in Vertex Al Model Registry

3. Generate batch predictions in Vertex Al

Full Access
Question # 74

You work for a large technology company that wants to modernize their contact center. You have been asked to develop a solution to classify incoming calls by product so that requests can be more quickly routed to the correct support team. You have already transcribed the calls using the Speech-to-Text API. You want to minimize data preprocessing and development time. How should you build the model?

A.

Use the Al Platform Training built-in algorithms to create a custom model

B.

Use AutoML Natural Language to extract custom entities for classification

C.

Use the Cloud Natural Language API to extract custom entities for classification

D.

Build a custom model to identify the product keywords from the transcribed calls, and then run the keywords through a classification algorithm

Full Access
Question # 75

You work for a bank and are building a random forest model for fraud detection. You have a dataset that

includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?

A.

Write your data in TFRecords.

B.

Z-normalize all the numeric features.

C.

Oversample the fraudulent transaction 10 times.

D.

Use one-hot encoding on all categorical features.

Full Access
Question # 76

Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?

A.

Convert the model to a Keras model, and run a Keras Tuner job.

B.

Run a hyperparameter tuning job on AI Platform using custom containers.

C.

Create a Kuberflow Pipelines instance, and run a hyperparameter tuning job on Katib.

D.

Convert the model to a TensorFlow model, and run a hyperparameter tuning job on AI Platform.

Full Access
Question # 77

You developed a custom model by using Vertex Al to forecast the sales of your company s products based on historical transactional data You anticipate changes in the feature distributions and the correlations between the features in the near future You also expect to receive a large volume of prediction requests You plan to use Vertex Al Model Monitoring for drift detection and you want to minimize the cost. What should you do?

A.

Use the features for monitoring Set a monitoring- frequency value that is higher than the default.

B.

Use the features for monitoring Set a prediction-sampling-rare value that is closer to 1 than 0.

C.

Use the features and the feature attributions for monitoring. Set a monitoring-frequency value that is lower than the default.

D.

Use the features and the feature attributions for monitoring Set a prediction-sampling-rate value that is closer to 0 than 1.

Full Access
Question # 78

You work for an online travel agency that also sells advertising placements on its website to other companies.

You have been asked to predict the most relevant web banner that a user should see next. Security is

important to your company. The model latency requirements are 300ms@p99, the inventory is thousands of web banners, and your exploratory analysis has shown that navigation context is a good predictor. You want to Implement the simplest solution. How should you configure the prediction pipeline?

A.

Embed the client on the website, and then deploy the model on AI Platform Prediction.

B.

Embed the client on the website, deploy the gateway on App Engine, and then deploy the model on AI Platform Prediction.

C.

Embed the client on the website, deploy the gateway on App Engine, deploy the database on Cloud

Bigtable for writing and for reading the user’s navigation context, and then deploy the model on AI Platform Prediction.

D.

Embed the client on the website, deploy the gateway on App Engine, deploy the database on Memorystore for writing and for reading the user’s navigation context, and then deploy the model on Google Kubernetes Engine.

Full Access
Question # 79

You developed a Python module by using Keras to train a regression model. You developed two model architectures, linear regression and deep neural network (DNN). within the same module. You are using the – raining_method argument to select one of the two methods, and you are using the Learning_rate-and num_hidden_layers arguments in the DNN. You plan to use Vertex Al's hypertuning service with a Budget to perform 100 trials. You want to identify the model architecture and hyperparameter values that minimize training loss and maximize model performance What should you do?

A.

Run one hypertuning job for 100 trials. Set num hidden_layers as a conditional hypetparameter based on its parent hyperparameter training_mothod. and set learning rate as a non-conditional hyperparameter

B.

Run two separate hypertuning jobs. a linear regression job for 50 trials, and a DNN job for 50 trials Compare their final performance on a

common validation set. and select the set of hyperparameters with the least training loss

C.

Run one hypertuning job for 100 trials Set num_hidden_layers and learning_rate as conditional hyperparameters based on their parent hyperparameter training method.

D.

Run one hypertuning job with training_method as the hyperparameter for 50 trials Select the architecture with the lowest training loss. and further hypertune It and its corresponding hyperparameters for 50 trials

Full Access
Question # 80

You work as an ML engineer at a social media company, and you are developing a visual filter for users’ profile photos. This requires you to train an ML model to detect bounding boxes around human faces. You want to use this filter in your company’s iOS-based mobile phone application. You want to minimize code development and want the model to be optimized for inference on mobile phones. What should you do?

A.

Train a model using AutoML Vision and use the “export for Core ML” option.

B.

Train a model using AutoML Vision and use the “export for Coral” option.

C.

Train a model using AutoML Vision and use the “export for TensorFlow.js” option.

D.

Train a custom TensorFlow model and convert it to TensorFlow Lite (TFLite).

Full Access
Question # 81

You trained a model, packaged it with a custom Docker container for serving, and deployed it to Vertex Al Model Registry. When you submit a batch prediction job, it fails with this error "Error model server never became ready Please validate that your model file or container configuration are valid. There are no additional errors in the logs What should you do?

A.

Add a logging configuration to your application to emit logs to Cloud Logging.

B.

Change the HTTP port in your model's configuration to the default value of 8080

C.

Change the health Route value in your models configuration to /heal thcheck.

D.

Pull the Docker image locally and use the decker run command to launch it locally. Use the docker logs command to explore the error logs.

Full Access
Question # 82

You are working on a prototype of a text classification model in a managed Vertex AI Workbench notebook. You want to quickly experiment with tokenizing text by using a Natural Language Toolkit (NLTK) library. How should you add the library to your Jupyter kernel?

A.

Install the NLTK library from a terminal by using the pip install nltk command.

B.

Write a custom Dataflow job that uses NLTK to tokenize your text and saves the output to Cloud Storage.

C.

Create a new Vertex Al Workbench notebook with a custom image that includes the NLTK library.

D.

Install the NLTK library from a Jupyter cell by using the! pip install nltk —user command.

Full Access
Question # 83

Your team is building an application for a global bank that will be used by millions of customers. You built a forecasting model that predicts customers1 account balances 3 days in the future. Your team will use the results in a new feature that will notify users when their account balance is likely to drop below $25. How should you serve your predictions?

A.

1. Create a Pub/Sub topic for each user

2 Deploy a Cloud Function that sends a notification when your model predicts that a user's account balance will drop below the $25 threshold.

B.

1. Create a Pub/Sub topic for each user

2. Deploy an application on the App Engine standard environment that sends a notification when your model predicts that

a user's account balance will drop below the $25 threshold

C.

1. Build a notification system on Firebase

2. Register each user with a user ID on the Firebase Cloud Messaging server, which sends a notification when the average of all account balance predictions drops below the $25 threshold

D.

1 Build a notification system on Firebase

2. Register each user with a user ID on the Firebase Cloud Messaging server, which sends a notification when your model predicts that a user's account balance will drop below the $25 threshold

Full Access
Question # 84

Your organization’s marketing team is building a customer recommendation chatbot that uses a generative AI large language model (LLM) to provide personalized product suggestions in real time. The chatbot needs to access data from millions of customers, including purchase history, browsing behavior, and preferences. The data is stored in a Cloud SQL for PostgreSQL database. You need the chatbot response time to be less than 100ms. How should you design the system?

A.

Use BigQuery ML to fine-tune the LLM with the data in the Cloud SQL for PostgreSQL database, and access the model from BigQuery.

B.

Replicate the Cloud SQL for PostgreSQL database to AlloyDB. Configure the chatbot server to query AlloyDB.

C.

Transform relevant customer data into vector embeddings and store them in Vertex AI Search for retrieval by the LLM.

D.

Create a caching layer between the chatbot and the Cloud SQL for PostgreSQL database to store frequently accessed customer data. Configure the chatbot server to query the cache.

Full Access
Question # 85

Your team trained and tested a DNN regression model with good results. Six months after deployment, the model is performing poorly due to a change in the distribution of the input data. How should you address the input differences in production?

A.

Create alerts to monitor for skew, and retrain the model.

B.

Perform feature selection on the model, and retrain the model with fewer features

C.

Retrain the model, and select an L2 regularization parameter with a hyperparameter tuning service

D.

Perform feature selection on the model, and retrain the model on a monthly basis with fewer features

Full Access