Summer Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpt65

Professional-Data-Engineer Questions and Answers

Question # 6

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Full Access
Question # 7

You need to compose visualization for operations teams with the following requirements:

Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

The report must not be more than 3 hours delayed from live data.

The actionable report should only show suboptimal links.

Most suboptimal links should be sorted to the top.

Suboptimal links can be grouped and filtered by regional geography.

User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

A.

Look through the current data and compose a series of charts and tables, one for each possiblecombination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possiblecombination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Full Access
Question # 8

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Full Access
Question # 9

You need (o give new website users a globally unique identifier (GUID) using a service that takes in data points and returns a GUID This data is sourced from both internal and external systems via HTTP calls that you will make via microservices within your pipeline There will be tens of thousands of messages per second and that can be multithreaded, and you worry about the backpressure on the system How should you design your pipeline to minimize that backpressure?

A.

Call out to the service via HTTP

B.

Create the pipeline statically in the class definition

C.

Create a new object in the startBundle method of DoFn

D.

Batch the job into ten-second increments

Full Access
Question # 10

Your startup has a web application that currently serves customers out of a single region in Asia. You are targeting funding that will allow your startup lo serve customers globally. Your current goal is to optimize for cost, and your post-funding goat is to optimize for global presence and performance. You must use a native JDBC driver. What should you do?

A.

Use Cloud Spanner to configure a single region instance initially. and then configure multi-region C oud Spanner instances after securing funding.

B.

Use a Cloud SQL for PostgreSQL highly available instance first, and 8»gtable with US. Europe, and Asiareplication alter securing funding

C.

Use a Cloud SQL for PostgreSQL zonal instance first and Bigtable with US. Europe, and Asia after securing funding.

D.

Use a Cloud SOL for PostgreSQL zonal instance first, and Cloud SOL for PostgreSQL with highly available configuration after securing funding.

Full Access
Question # 11

You need to move 2 PB of historical data from an on-premises storage appliance to Cloud Storage within six months, and your outbound network capacity is constrained to 20 Mb/sec. How should you migrate this data to Cloud Storage?

A.

Use Transfer Appliance to copy the data to Cloud Storage

B.

Use gsutil cp –J to compress the content being uploaded to Cloud Storage

C.

Create a private URL for the historical data, and then use Storage Transfer Service to copy the data to Cloud Storage

D.

Use trickle or ionice along with gsutil cp to limit the amount of bandwidth gsutil utilizes to less than 20 Mb/sec so it does not interfere with the production traffic

Full Access
Question # 12

You are migrating an application that tracks library books and information about each book, such as author or year published, from an on-premises data warehouse to BigQuery In your current relational database, the author information is kept in a separate table and joined to the book information on a common key Based on Google's recommended practice for schema design, how would you structure the data to ensure optimal speed of queries about the author of each book that has been borrowed?

A.

Keep the schema the same, maintain the different tables for the book and each of the attributes, and query as you are doing today

B.

Create a table that is wide and includes a column for each attribute, including the author's first name, last name, date of birth, etc

C.

Create a table that includes information about the books and authors, but nest the author fields inside the author column

D.

Keep the schema the same, create a view that joins all of the tables, and always query the view

Full Access
Question # 13

You are administering a BigQuery dataset that uses a customer-managed encryption key (CMEK). You need to share the dataset with a partner organization that does not have access to your CMEK. What should you do?

A.

Create an authorized view that contains the CMEK to decrypt the data when accessed.

B.

Provide the partner organization a copy of your CMEKs to decrypt the data.

C.

Copy the tables you need to share to a dataset without CMEKs Create an Analytics Hub listing for this dataset.

D.

Export the tables to parquet files to a Cloud Storage bucket and grant the storageinsights. viewer role on the bucket to the partner organization.

Full Access
Question # 14

Your infrastructure includes a set of YouTube channels. You have been tasked with creating a process for sending the YouTube channel data to Google Cloud for analysis. You want to design a solution that allows your world-wide marketing teams to perform ANSI SQL and other types of analysis on up-to-date YouTube channels log data. How should you set up the log data transfer into Google Cloud?

A.

Use Storage Transfer Service to transfer the offsite backup files to a Cloud Storage Multi-Regional storage bucket as a final destination.

B.

Use Storage Transfer Service to transfer the offsite backup files to a Cloud Storage Regional bucket as a final destination.

C.

Use BigQuery Data Transfer Service to transfer the offsite backup files to a Cloud Storage Multi-Regional storage bucket as a final destination.

D.

Use BigQuery Data Transfer Service to transfer the offsite backup files to a Cloud Storage Regionalstorage bucket as a final destination.

Full Access
Question # 15

You need to set access to BigQuery for different departments within your company. Your solution should comply with the following requirements:

Each department should have access only to their data.

Each department will have one or more leads who need to be able to create and update tables and provide them to their team.

Each department has data analysts who need to be able to query but not modify data.

How should you set access to the data in BigQuery?

A.

Create a dataset for each department. Assign the department leads the role of OWNER, and assign the data analysts the role of WRITER on their dataset.

B.

Create a dataset for each department. Assign the department leads the role of WRITER, and assign the data analysts the role of READER on their dataset.

C.

Create a table for each department. Assign the department leads the role of Owner, and assign the data analysts the role of Editor on the project the table is in.

D.

Create a table for each department. Assign the department leads the role of Editor, and assign the data analysts the role of Viewer on the project the table is in.

Full Access
Question # 16

You are training a spam classifier. You notice that you are overfitting the training data. Which three actions can you take to resolve this problem? (Choose three.)

A.

Get more training examples

B.

Reduce the number of training examples

C.

Use a smaller set of features

D.

Use a larger set of features

E.

Increase the regularization parameters

F.

Decrease the regularization parameters

Full Access
Question # 17

You are designing storage for very large text files for a data pipeline on Google Cloud. You want to support ANSI SQL queries. You also want to support compression and parallel load from the input locations using Google recommended practices. What should you do?

A.

Transform text files to compressed Avro using Cloud Dataflow. Use BigQuery for storage and query.

B.

Transform text files to compressed Avro using Cloud Dataflow. Use Cloud Storage and BigQuerypermanent linked tables for query.

C.

Compress text files to gzip using the Grid Computing Tools. Use BigQuery for storage and query.

D.

Compress text files to gzip using the Grid Computing Tools. Use Cloud Storage, and then import intoCloud Bigtable for query.

Full Access
Question # 18

Your organization stores employee information in a BigQuery dataset. Your human resources (HR) admin team requires full access to the data, but the HR analyst team needs to conduct salary analysis without being able to access personally identifiable information (PII). You want to ensure that users have the correct level of access for their role managed through Dataplex, while reducing data duplication. What should you do?

A.

Create an authorized view to limit data access based on a user role.

B.

Create and assign policy tags based on user role to the PII columns in BigQuery.

C.

Create a new dataset for salary analysis and use data masking to obfuscate all fields related to an individual.

D.

Create a new dataset and use Cloud Data Loss Prevention (Cloud DLP) to mask PII in the BigQuery table.

Full Access
Question # 19

You have an Oracle database deployed in a VM as part of a Virtual Private Cloud (VPC) network. You want to replicate and continuously synchronize 50 tables to BigQuery. You want to minimize the need to manage infrastructure. What should you do?

A.

Create a Datastream service from Oracle to BigQuery, use a private connectivity configuration to the same VPC network, and a connection profile to BigQuery.

B.

Create a Pub/Sub subscription to write to BigQuery directly Deploy the Debezium Oracle connector to capture changes in the Oracle database, and sink to the Pub/Sub topic.

C.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle Change Data Capture (CDC), and Dataflow to stream the Kafka topic to BigQuery.

D.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle change data capture (CDC), and the Kafka Connect Google BigQuery Sink Connector.

Full Access
Question # 20

Your company's customer_order table in BigOuery stores the order history for 10 million customers, with a table size of 10 PB. You need to create a dashboard for the support team to view the order history. The dashboard has two filters, countryname and username. Both are string data types in the BigQuery table. When a filter is applied, the dashboard fetches the order history from the table and displays the query results. However, the dashboard is slow to show the results when applying the filters to the following query:

How should you redesign the BigQuery table to support faster access?

A.

Cluster the table by country field, and partition by username field.

B.

Partition the table by country and username fields.

C.

Cluster the table by country and username fields

D.

Partition the table by _PARTITIONTIME.

Full Access
Question # 21

You need to choose a database for a new project that has the following requirements:

Fully managed

Able to automatically scale up

Transactionally consistent

Able to scale up to 6 TB

Able to be queried using SQL

Which database do you choose?

A.

Cloud SQL

B.

Cloud Bigtable

C.

Cloud Spanner

D.

Cloud Datastore

Full Access
Question # 22

You are building a new application that you need to collect data from in a scalable way. Data arrives continuously from the application throughout the day, and you expect to generate approximately 150 GB of JSON data per day by the end of the year. Your requirements are:

Decoupling producer from consumer

Space and cost-efficient storage of the raw ingested data, which is to be stored indefinitely

Near real-time SQL query

Maintain at least 2 years of historical data, which will be queried with SQ

Which pipeline should you use to meet these requirements?

A.

Create an application that provides an API. Write a tool to poll the API and write data to Cloud Storage as gzipped JSON files.

B.

Create an application that writes to a Cloud SQL database to store the data. Set up periodic exports of the database to write to Cloud Storage and load into BigQuery.

C.

Create an application that publishes events to Cloud Pub/Sub, and create Spark jobs on Cloud Dataproc to convert the JSON data to Avro format, stored on HDFS on Persistent Disk.

D.

Create an application that publishes events to Cloud Pub/Sub, and create a Cloud Dataflow pipeline that transforms the JSON event payloads to Avro, writing the data to Cloud Storage and BigQuery.

Full Access
Question # 23

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Full Access
Question # 24

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Full Access
Question # 25

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Full Access
Question # 26

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Full Access
Question # 27

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Full Access
Question # 28

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

No interaction by the user on the site for 1 hour

Has added more than $30 worth of products to the basket

Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

A.

Use a fixed-time window with a duration of 60 minutes.

B.

Use a sliding time window with a duration of 60 minutes.

C.

Use a session window with a gap time duration of 60 minutes.

D.

Use a global window with a time based trigger with a delay of 60 minutes.

Full Access
Question # 29

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Full Access
Question # 30

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Full Access
Question # 31

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

A.

There are very few occurrences of mutations relative to normal samples.

B.

There are roughly equal occurrences of both normal and mutated samples in the database.

C.

You expect future mutations to have different features from the mutated samples in the database.

D.

You expect future mutations to have similar features to the mutated samples in the database.

E.

You already have labels for which samples are mutated and which are normal in the database.

Full Access
Question # 32

You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?

A.

Delete the table CLICK_STREAM, and then re-create it such that the column DT is of the TIMESTAMP type. Reload the data.

B.

Add a column TS of the TIMESTAMP type to the table CLICK_STREAM, and populate the numeric values from the column TS for each row. Reference the column TS instead of the column DT from now on.

C.

Create a view CLICK_STREAM_V, where strings from the column DT are cast into TIMESTAMP values. Reference the view CLICK_STREAM_V instead of the table CLICK_STREAM from now on.

D.

Add two columns to the table CLICK STREAM: TS of the TIMESTAMP type and IS_NEW of the BOOLEAN type. Reload all data in append mode. For each appended row, set the value of IS_NEW to true. For future queries, reference the column TS instead of the column DT, with the WHERE clause ensuring that the value of IS_NEW must be true.

E.

Construct a query to return every row of the table CLICK_STREAM, while using the built-in function to cast strings from the column DT into TIMESTAMP values. Run the query into a destination table NEW_CLICK_STREAM, in which the column TS is the TIMESTAMP type. Reference the table NEW_CLICK_STREAM instead of the table CLICK_STREAM from now on. In the future, new data is loaded into the table NEW_CLICK_STREAM.

Full Access
Question # 33

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Full Access
Question # 34

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Full Access
Question # 35

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Full Access
Question # 36

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Full Access
Question # 37

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Full Access
Question # 38

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Full Access
Question # 39

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Full Access
Question # 40

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Full Access
Question # 41

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Full Access
Question # 42

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Full Access
Question # 43

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Full Access
Question # 44

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Full Access
Question # 45

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Full Access
Question # 46

When a Cloud Bigtable node fails, ____ is lost.

A.

all data

B.

no data

C.

the last transaction

D.

the time dimension

Full Access
Question # 47

Google Cloud Bigtable indexes a single value in each row. This value is called the _______.

A.

primary key

B.

unique key

C.

row key

D.

master key

Full Access
Question # 48

If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?

A.

1 continuous and 2 categorical

B.

3 categorical

C.

3 continuous

D.

2 continuous and 1 categorical

Full Access
Question # 49

Which of the following is NOT one of the three main types of triggers that Dataflow supports?

A.

Trigger based on element size in bytes

B.

Trigger that is a combination of other triggers

C.

Trigger based on element count

D.

Trigger based on time

Full Access
Question # 50

Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?

A.

A sequential numeric ID

B.

A timestamp followed by a stock symbol

C.

A non-sequential numeric ID

D.

A stock symbol followed by a timestamp

Full Access
Question # 51

Why do you need to split a machine learning dataset into training data and test data?

A.

So you can try two different sets of features

B.

To make sure your model is generalized for more than just the training data

C.

To allow you to create unit tests in your code

D.

So you can use one dataset for a wide model and one for a deep model

Full Access
Question # 52

Which software libraries are supported by Cloud Machine Learning Engine?

A.

Theano and TensorFlow

B.

Theano and Torch

C.

TensorFlow

D.

TensorFlow and Torch

Full Access
Question # 53

When creating a new Cloud Dataproc cluster with the projects.regions.clusters.create operation, these four values are required: project, region, name, and ____.

A.

zone

B.

node

C.

label

D.

type

Full Access
Question # 54

Which of these statements about exporting data from BigQuery is false?

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Full Access
Question # 55

Which of the following statements about Legacy SQL and Standard SQL is not true?

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Full Access
Question # 56

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Full Access
Question # 57

Which action can a Cloud Dataproc Viewer perform?

A.

Submit a job.

B.

Create a cluster.

C.

Delete a cluster.

D.

List the jobs.

Full Access
Question # 58

In order to securely transfer web traffic data from your computer's web browser to the Cloud Dataproc cluster you should use a(n) _____.

A.

VPN connection

B.

Special browser

C.

SSH tunnel

D.

FTP connection

Full Access
Question # 59

Which of the following statements is NOT true regarding Bigtable access roles?

A.

Using IAM roles, you cannot give a user access to only one table in a project, rather than all tables in a project.

B.

To give a user access to only one table in a project, grant the user the Bigtable Editor role forthat table.

C.

You can configure access control only at the project level.

D.

To give a user access to only one table in a project, you must configure access through your application.

Full Access
Question # 60

Which of the following is not true about Dataflow pipelines?

A.

Pipelines are a set of operations

B.

Pipelines represent a data processing job

C.

Pipelines represent a directed graph of steps

D.

Pipelines can share data between instances

Full Access
Question # 61

Which of these sources can you not load data into BigQuery from?

A.

File upload

B.

Google Drive

C.

Google Cloud Storage

D.

Google Cloud SQL

Full Access
Question # 62

When running a pipeline that has a BigQuery source, on your local machine, you continue to get permission denied errors. What could be the reason for that?

A.

Your gcloud does not have access to the BigQuery resources

B.

BigQuery cannot be accessed from local machines

C.

You are missing gcloud on your machine

D.

Pipelines cannot be run locally

Full Access
Question # 63

Which of the following job types are supported by Cloud Dataproc (select 3 answers)?

A.

Hive

B.

Pig

C.

YARN

D.

Spark

Full Access
Question # 64

The Dataflow SDKs have been recently transitioned into which Apache service?

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Full Access