Which technique is an example of a DNS attack that Advanced DNS Security can detect and prevent?
High entropy DNS domains
Polymorphic DNS
CNAME cloaking
DNS domain rebranding
Advanced DNS Security on Palo Alto Networks firewalls is designed to identify and prevent a wide range of DNS-based attacks. Among the listed options, "High entropy DNS domains" is a specific example of a DNS attack that Advanced DNS Security can detect and block.
Why "High entropy DNS domains" (Correct Answer A)?High entropy DNS domains are often used in attacks where randomly generated domain names (e.g., gfh34ksdu.com) are utilized by malware or bots to evade detection. This is a hallmark of Domain Generation Algorithms (DGA)-based attacks. Palo Alto Networks firewalls with Advanced DNS Security use machine learning to detect such domains by analyzing the entropy (randomness) of DNS queries. High entropy values indicate the likelihood of a dynamically generated or malicious domain.
Why not "Polymorphic DNS" (Option B)?While polymorphic DNS refers to techniques that dynamically change DNS records to avoid detection, it is not specifically identified as an attack type mitigated by Advanced DNS Security in Palo Alto Networks documentation. The firewall focuses more on the behavior of DNS queries, such as detecting DGA domains or anomalous DNS traffic patterns.
Why not "CNAME cloaking" (Option C)?CNAME cloaking involves using CNAME records to redirect DNS queries to malicious or hidden domains. Although Palo Alto firewalls may detect and block malicious DNS redirections, the focus of Advanced DNS Security is primarily on identifying patterns of DNS abuse like DGA domains, tunneling, or high entropy queries.
Why not "DNS domain rebranding" (Option D)?DNS domain rebranding involves changing the domain names associated with malicious activity to evade detection. This is typically a tactic used for persistence but is not an example of a DNS attack type specifically addressed by Advanced DNS Security.
Advanced DNS Security focuses on dynamic, real-time identification of suspicious DNS patterns, such as high entropy domains, DNS tunneling, or protocol violations. High entropy DNS domains are directly tied to attack mechanisms like DGAs, making this the correct answer.
When a customer needs to understand how Palo Alto Networks NGFWs lower the risk of exploitation by newly announced vulnerabilities known to be actively attacked, which solution and functionality delivers the most value?
Advanced URL Filtering uses machine learning (ML) to learn which malicious URLs are being utilized by the attackers, then block the resulting traffic.
Advanced Threat Prevention's command injection and SQL injection functions use inline deep learning against zero-day threats.
Single Pass Architecture and parallel processing ensure traffic is efficiently scanned against any enabled Cloud-Delivered Security Services (CDSS) subscription.
WildFire loads custom OS images to ensure that the sandboxing catches any activity that would affect the customer's environment.
The most effective way to reduce the risk of exploitation bynewly announced vulnerabilitiesis throughAdvanced Threat Prevention (ATP). ATP usesinline deep learningto identify and block exploitation attempts, even for zero-day vulnerabilities, in real time.
Why "Advanced Threat Prevention’s command injection and SQL injection functions use inline deep learning against zero-day threats" (Correct Answer B)?Advanced Threat Prevention leveragesdeep learning modelsdirectly in the data path, which allows it to analyze traffic in real time and detect patterns of exploitation, including newly discovered vulnerabilities being actively exploited in the wild. It specifically targets advanced tactics like:
Command injection.
SQL injection.
Memory-based exploits.
Protocol evasion techniques.
This functionality lowers the risk of exploitation byactively blocking attack attemptsbased on their behavior, even when a signature is not yet available. This approach makes ATP the most valuable solution for addressing new and actively exploited vulnerabilities.
Why not "Advanced URL Filtering uses machine learning (ML) to learn which malicious URLs are being utilized by the attackers, then block the resulting traffic" (Option A)?While Advanced URL Filtering is highly effective at blocking access to malicious websites, it does not provide the inline analysis necessary to prevent direct exploitation of vulnerabilities. Exploitation often happens within the application or protocol layer, which Advanced URL Filtering does not inspect.
Why not "Single Pass Architecture and parallel processing ensure traffic is efficiently scanned against any enabled Cloud-Delivered Security Services (CDSS) subscription" (Option C)?Single Pass Architecture improves performance by ensuring all enabled services (like Threat Prevention, URL Filtering, etc.) process traffic efficiently. However, it is not a feature that directly addresses vulnerability exploitation or zero-day attack detection.
Why not "WildFire loads custom OS images to ensure that the sandboxing catches anyactivity that would affect the customer's environment" (Option D)?WildFire is a sandboxing solution designed to detect malicious files and executables. While it is useful for analyzing malware, it does not provide inline protection against exploitation of newly announced vulnerabilities, especially those targeting network protocols or applications.
A prospective customer wants to validate an NGFW solution and seeks the advice of a systemsengineer (SE) regarding a design to meet the following stated requirements:
"We need an NGFW that can handle 72 Gbps inside of our core network. Our core switches only have up to 40 Gbps links available to which new devices can connect. We cannot change the IP address structure of the environment, and we need protection for threat prevention, DNS, and perhaps sandboxing."
Which hardware and architecture/design recommendations should the SE make?
PA-5445 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-2 or virtual wire mode that include 2 x 40Gbps interfaces on both sides of the path.
PA-5430 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-3 mode that include 40Gbps interfaces on both sides of the path.
PA-5445 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-3 mode that include 40Gbps interfaces on both sides of the path.
PA-5430 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-2 or virtual wire mode that include 2 x 40Gbps interfaces on both sides of the path.
The problem provides several constraints and design requirements that must be carefully considered:
Bandwidth Requirement:
The customer needs an NGFW capable of handling a total throughput of 72 Gbps.
The PA-5445 is specifically designed for high-throughput environments and supports up to81.3 Gbps Threat Prevention throughput(as per the latest hardware performance specifications). This ensures the throughput needs are fully met with some room for growth.
Interface Compatibility:
The customer mentions that their core switches support up to40 Gbps interfaces. The design must include aggregate links to meet the overall bandwidth while aligning with the 40 Gbps interface limitations.
The PA-5445 supports40Gbps QSFP+ interfaces, making it a suitable option for the hardware requirement.
No Change to IP Address Structure:
Since the customer cannot modify their IP address structure, deploying the NGFW inLayer-2 or Virtual Wire modeis ideal.
Virtual Wire modeallows the firewall to inspect traffic transparently between two Layer-2 devices without modifying the existing IP structure. Similarly, Layer-2 mode allows the firewall to behave like a switch at Layer-2 while still applying security policies.
Threat Prevention, DNS, and Sandboxing Requirements:
The customer requires advanced security features likeThreat Preventionand potentiallysandboxing(WildFire). The PA-5445 is equipped to handle these functionalities with its dedicated hardware-based architecture for content inspection and processing.
Aggregate Interface Groups:
The architecture should includeaggregate interface groupsto distribute traffic across multiple physical interfaces to support the high throughput requirement.
By aggregating2 x 40Gbps interfaces on both sides of the pathin Virtual Wire or Layer-2 mode, the design ensures sufficient bandwidth (up to 80 Gbps per side).
Why PA-5445 in Layer-2 or Virtual Wire mode is the Best Option:
Option Asatisfies all the customer’s requirements:
The PA-5445 meets the 72 Gbps throughput requirement.
2 x 40 Gbps interfaces can be aggregated to handle traffic flow between the core switches and the NGFW.
Virtual Wire or Layer-2 mode preserves the IP address structure, while still allowing full threat prevention and DNS inspection capabilities.
The PA-5445 also supports sandboxing (WildFire) for advanced file-based threat detection.
Why Not Other Options:
Option B:
The PA-5430 is insufficient for the throughput requirement (72 Gbps). Itsmaximum Threat Prevention throughput is 60.3 Gbps, which does not provide the necessary capacity.
Option C:
While the PA-5445 is appropriate, deploying it inLayer-3 modewould require changes to the IP address structure, which the customer explicitly stated is not an option.
Option D:
The PA-5430 does not meet the throughput requirement. Although Layer-2 or Virtual Wire mode preserves the IP structure, the throughput capacity of the PA-5430 is a limiting factor.
References from Palo Alto Networks Documentation:
Palo Alto Networks PA-5400 Series Datasheet (latest version)
Specifies the performance capabilities of the PA-5445 and PA-5430 models.
Palo Alto Networks Virtual Wire Deployment Guide
Explains how Virtual Wire mode can be used to transparently inspect traffic without changing the existing IP structure.
Aggregated Ethernet Interface Documentation
Details the configuration and use of aggregate interface groups for high throughput.
Which initial action can a network security engineer take to prevent a malicious actor from using a file-sharing application for data exfiltration without impacting users who still need to use file-sharing applications?
Use DNS Security to limit access to file-sharing applications based on job functions.
Use App-ID to limit access to file-sharing applications based on job functions.
Use DNS Security to block all file-sharing applications and uploading abilities.
Use App-ID to block all file-sharing applications and uploading abilities.
To prevent malicious actors from abusing file-sharing applications for data exfiltration,App-IDprovides a granular approach to managing application traffic. Palo Alto Networks'App-IDis a technology that identifies applications traversing the network, regardless of port, protocol, encryption (SSL), or evasive tactics. By leveraging App-ID, security engineers can implement policies that restrict the use of specific applications or functionalities based on job functions, ensuring that only authorized users or groups can use file-sharing applications while blocking unauthorized or malicious usage.
Here’s why the options are evaluated this way:
Option A:DNS Security focuses on identifying and blocking malicious domains. While it plays a critical role in preventing certain attacks (like command-and-control traffic), it is not effective for managing application usage. Hence, this is not the best approach.
Option B (Correct):App-ID provides the ability to identify file-sharing applications (such as Dropbox, Google Drive, or OneDrive) and enforce policies to restrict their use. For example, you can create a security rule allowing file-sharing apps only for specific job functions, such as HR or marketing, while denying them for other users. This targeted approach ensures legitimate business needs are not disrupted, which aligns with the requirement of not impacting valid users.
Option C:Blocking all file-sharing applications outright using DNS Security is a broad measure that will indiscriminately impact legitimate users. This does not meet the requirement of allowing specific users to continue using file-sharing applications.
Option D:While App-ID can block file-sharing applications outright, doing so will prevent legitimate usage and is not aligned with the requirement to allow usage based on job functions.
How to Implement the Solution (Using App-ID):
Identify the relevant file-sharing applications using App-ID in Palo Alto Networks’ predefined application database.
Create security policies that allow these applications only for users or groups defined in your directory (e.g., Active Directory).
Use custom App-ID filters or explicit rules to control specific functionalities of file-sharing applications, such as uploads or downloads.
Monitor traffic to ensure that only authorized users are accessing the applications and that no malicious activity is occurring.
References:
Palo Alto Networks Admin Guide: Application Identification and Usage Policies.
Best Practices for App-ID Configuration: https://docs.paloaltonetworks.com
Which use case is valid for Palo Alto Networks Next-Generation Firewalls (NGFWs)?
Code-embedded NGFWs provide enhanced internet of things (IoT) security by allowing PAN-OS code to be run on devices that do not support embedded virtual machine (VM) images.
Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage virtual machine (VM) instances or containerized services.
IT/OT segmentation firewalls allow operational technology resources in plant networks to securely interface with IT resources in the corporate network.
PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
Palo Alto Networks Next-Generation Firewalls (NGFWs) provide robust security features across a variety of use cases. Let’s analyze each option:
A. Code-embedded NGFWs provide enhanced IoT security by allowing PAN-OS code to be run on devices that do not support embedded VM images.
This statement is incorrect. NGFWs do not operate as "code-embedded" solutions for IoT devices. Instead, they protect IoT devices through advanced threat prevention, device identification, and segmentation capabilities.
B. Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage VM instances or containerized services.
This is not a valid use case. Palo Alto NGFWs provide security for public cloud environments using VM-series firewalls, CN-series (containerized firewalls), and Prisma Cloud for securing serverless architectures. NGFWs do not operate in "code-only" environments.
C. IT/OT segmentation firewalls allow operational technology (OT) resources in plant networks to securely interface with IT resources in the corporate network.
This is a valid use case. Palo Alto NGFWs are widely used in industrial environments to provide IT/OT segmentation, ensuring that operational technology systems in plants or manufacturing facilities can securely communicate with IT networks while protecting against cross-segment threats. Features like App-ID, User-ID, and Threat Prevention are leveraged for this segmentation.
D. PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
This is incorrect. GlobalProtect gateways provide secure remote access to corporate networks and extend the NGFW’s threat prevention capabilities to endpoints, but endpoint agents are required to enforce malware and exploit prevention modules.
Key Takeaways:
IT/OT segmentation with NGFWs is a real and critical use case in industries like manufacturing and utilities.
The other options describe features or scenarios that are not applicable or valid for NGFWs.
References:
Palo Alto Networks NGFW Use Cases
Industrial Security with NGFWs
A prospective customer is interested in Palo Alto Networks NGFWs and wants to evaluate the ability to segregate its internal network into unique BGP environments.
Which statement describes the ability of NGFWs to address this need?
It cannot be addressed because PAN-OS does not support it.
It can be addressed by creating multiple eBGP autonomous systems.
It can be addressed with BGP confederations.
It cannot be addressed because BGP must be fully meshed internally to work.
Segregating a network into unique BGP environments requires the ability to configure separateeBGP autonomous systems(AS) within the NGFW. Palo Alto Networks firewalls support advanced BGP features, including the ability to create and manage multiple autonomous systems.
Why "It can be addressed by creating multiple eBGP autonomous systems" (Correct Answer B)?PAN-OS supports the configuration of multiple eBGP AS environments. By creating unique eBGP AS numbers for different parts of the network, traffic can be segregated and routed separately. This feature is commonly used in multi-tenant environments or networks requiring logical separation for administrative or policy reasons.
Each eBGP AS can maintain its own routing policies, neighbors, and traffic segmentation.
This approach allows the NGFW to address the customer’s need for segregated internal BGP environments.
Why not "It cannot be addressed because PAN-OS does not support it" (Option A)?This statement is incorrect because PAN-OS fully supports BGP, including eBGP, iBGP, and features like route reflectors, confederations, and autonomous systems.
Why not "It can be addressed with BGP confederations" (Option C)?While BGP confederations can logically group AS numbers within a single AS, they are generally used to simplify iBGP designs in very large-scale networks. They are not commonly used for segregating internal environments and are not required for the described use case.
Why not "It cannot be addressed because BGP must be fully meshed internally to work" (Option D)?Full mesh iBGP is only required in environments without route reflectors. The described scenario does not mention the need for iBGP full mesh; instead, it focuses on segregated environments, which can be achieved with eBGP.
A systems engineer (SE) successfully demonstrates NGFW managed by Strata Cloud Manager (SCM) to a company. In the resulting planning phase of the proof of value (POV), the CISO requests a test that shows how the security policies are either meeting, or are progressing toward meeting, industry standards such as Critical Security Controls (CSC), and how the company can verify that it is effectively utilizing the functionality purchased.
During the POV testing timeline, how should the SE verify that the POV will meet the CISO's request?
Near the end, pull a Security Lifecycle Review (SLR) in the POV and create a report for the customer.
At the beginning, work with the customer to create custom dashboards and reports for any information required, so reports can be pulled as needed by the customer.
Near the end, the customer pulls information from these SCM dashboards: Best Practices, CDSS Adoption, and NGFW Feature Adoption.
At the beginning, use PANhandler golden images that are designed to align to compliance and to turning on the features for the CDSS subscription being tested.
Security Lifecycle Review (SLR) (Answer A):
TheSecurity Lifecycle Review (SLR)is a detailed report generated by Palo Alto Networks firewalls that providesvisibility into application usage, threats, and policy alignmentwith industry standards.
During the POV, running an SLR near the end of the timeline allows the customer to see:
How well their current security policies align withCritical Security Controls (CSC)or other industry standards.
Insights into application usage and threats discovered during the POV.
This providesactionable recommendationsfor optimizing policies and ensuring the purchased functionality is being effectively utilized.
Why Not B:
While creating custom dashboards and reports at the beginning might provide useful insights, the question focuses onverifying progress toward meeting CSC standards. This is specifically addressed by the SLR, which is designed to measure and report on such criteria.
Why Not C:
Pulling information fromSCM dashboards like Best Practices and Feature Adoptioncan help assess firewall functionality but may not provide acomprehensive review of compliance or CSC alignment, as the SLR does.
Why Not D:
WhilePANhandler golden imagescan help configure features in alignment with specific subscriptions or compliance goals, they are primarily used to deploy predefined templates, not to assess security policy effectiveness or compliance with CSC standards.
References from Palo Alto Networks Documentation:
Security Lifecycle Review Overview
Strata Cloud Manager Dashboards
Regarding APIs, a customer RFP states: "The vendor’s firewall solution must provide an API with an enforcement mechanism to deactivate API keys after two hours." How should the response address this clause?
Yes - This is the default setting for API keys.
No - The PAN-OS XML API does not support keys.
No - The API keys can be made, but there is no method to deactivate them based on time.
Yes - The default setting must be changed from no limit to 120 minutes.
Palo Alto Networks' PAN-OS supports API keys for authentication when interacting with the firewall’s RESTful and XML-based APIs. By default, API keys do not have an expiration time set, but the expiration time for API keys can be configured by an administrator to meet specific requirements, such as a time-based deactivation after two hours. This is particularly useful for compliance and security purposes, where API keys should not remain active indefinitely.
Here’s an evaluation of the options:
Option A:This is incorrect because the default setting for API keys does not include an expiration time. By default, API keys are valid indefinitely unless explicitly configured otherwise.
Option B:This is incorrect because PAN-OS fully supports API keys. The API keys are integral to managing access to the firewall's APIs and provide a secure method for authentication.
Option C:This is incorrect because PAN-OS does support API key expiration when explicitly configured. While the default is "no expiration," the feature to configure an expiration time (e.g., 2 hours) is available.
Option D (Correct):The correct response to the RFP clause is that the default API key settings need to be modified to set the expiration time to 120 minutes (2 hours). This aligns with the customer requirement to enforce API key deactivation based on time. Administrators can configure this using the PAN-OS management interface or the CLI.
How to Configure API Key Expiration (Steps):
Access theWeb InterfaceorCLIon the firewall.
Navigate toDevice > Management > API Key Lifetime Settings(on the GUI).
Set the desired expiration time (e.g., 120 minutes).
Alternatively, use the CLI to configure the API key expiration:
set deviceconfig system api-key-expiry
commit
Verify the configuration using the show command or by testing API calls to ensure the key expires after the set duration.
References:
Palo Alto Networks API Documentation: https://docs.paloaltonetworks.com/apis
Configuration Guide: Managing API Key Expiration
What is the minimum configuration to stop a Cobalt Strike Malleable C2 attack inline and in real time?
Next-Generation CASB on PAN-OS 10.1
Advanced Threat Prevention and PAN-OS 10.2
Threat Prevention and Advanced WildFire with PAN-OS 10.0
DNS Security, Threat Prevention, and Advanced WildFire with PAN-OS 9.x
Cobalt Strike is a popular post-exploitation framework often used by attackers for Command and Control (C2) operations. Malleable C2 profiles allow attackers to modify the behavior of their C2 communication, making detection more difficult. Stopping these attacks inreal timerequires deep inline inspection and the ability to block zero-day and evasive threats.
Why "Advanced Threat Prevention and PAN-OS 10.2" (Correct Answer B)?Advanced Threat Prevention (ATP) on PAN-OS 10.2 usesinline deep learning modelsto detect and blockCobalt Strike Malleable C2 attacksin real time. ATP is designed to prevent evasive techniques and zero-day threats, which is essential for blocking Malleable C2. PAN-OS 10.2 introduces enhanced capabilities for detecting malicious traffic patterns and inline analysis of encrypted traffic.
ATP examines traffic behavior and signature-less threats, effectively stopping evasive C2 profiles.
PAN-OS 10.2 includes real-time protections specifically for Malleable C2.
Why not "Next-Generation CASB on PAN-OS 10.1" (Option A)?Next-Generation CASB (Cloud Access Security Broker) is designed to secure SaaS applications and does not provide the inline C2 protection required to stop Malleable C2 attacks. CASB is not related to Command and Control detection.
Why not "Threat Prevention and Advanced WildFire with PAN-OS 10.0" (Option C)?Threat Prevention and Advanced WildFire are effective for detecting and preventing malware and known threats. However, they rely heavily on signatures and sandboxing for analysis, which is not sufficient for stoppingreal-time evasive C2 traffic. PAN-OS 10.0 lacks the advanced inline capabilities provided by ATP in PAN-OS 10.2.
Why not "DNS Security, Threat Prevention, and Advanced WildFire with PAN-OS 9.x" (Option D)?While DNS Security and Threat Prevention are valuable for blocking malicious domains and known threats, PAN-OS 9.x does not provide the inline deep learning capabilities needed for real-time detection and prevention of Malleable C2 attacks. The absence of advanced behavioral analysis in PAN-OS 9.x makes this combination ineffective against advanced C2 attacks.
A company has multiple business units, each of which manages its own user directories and identity providers (IdPs) with different domain names. The company’s network security team wants to deploy a shared GlobalProtect remote access service for all business units to authenticate users to each business unit's IdP.
Which configuration will enable the network security team to authenticate GlobalProtect users to multiple SAML IdPs?
GlobalProtect with multiple authentication profiles for each SAML IdP
Multiple authentication mode Cloud Identity Engine authentication profile for use on the GlobalProtect portals and gateways
Authentication sequence that has multiple authentication profiles using different authentication methods
Multiple Cloud Identity Engine tenants for each business unit
To configure GlobalProtect to authenticate users from multiple SAML identity providers (IdPs), the correct approach involves creating multiple authentication profiles, one for each IdP. Here's the analysis of each option:
Option A: GlobalProtect with multiple authentication profiles for each SAML IdP
GlobalProtect allows configuring multiple SAML authentication profiles, each corresponding to a specific IdP.
These profiles are associated with the GlobalProtect portal or gateway. When users attempt to authenticate, they can be directed to the appropriate IdP based on their domain or other attributes.
This is the correct approach to enable authentication for users from multiple IdPs.
Option B: Multiple authentication mode Cloud Identity Engine authentication profile for use on the GlobalProtect portals and gateways
The Cloud Identity Engine (CIE) can synchronize identities from multiple directories, but it does not directly support multiple SAML IdPs for a shared GlobalProtect setup.
This option is not applicable.
Option C: Authentication sequence that has multiple authentication profiles using different authentication methods
Authentication sequences allow multiple authentication methods (e.g., LDAP, RADIUS, SAML) to be tried in sequence for the same user, but they are not designed for handling multiple SAML IdPs.
This option is not appropriate for the scenario.
Option D: Multiple Cloud Identity Engine tenants for each business unit
Deploying multiple CIE tenants for each business unit adds unnecessary complexity and is not required for configuring GlobalProtect to authenticate users to multiple SAML IdPs.
This option is not appropriate.
What is used to stop a DNS-based threat?
DNS proxy
Buffer overflow protection
DNS tunneling
DNS sinkholing
DNS-based threats, such as DNS tunneling, phishing, or malware command-and-control (C2) activities, are commonly used by attackers to exfiltrate data or establish malicious communications. Palo Alto Networks firewalls provide several mechanisms to address these threats, and the correct method isDNS sinkholing.
Why "DNS sinkholing" (Correct Answer D)?DNS sinkholing redirects DNS queries for malicious domains to an internal or non-routable IP address, effectively preventing communication with malicious domains. When a user or endpoint tries to connect to a malicious domain, the sinkhole DNS entry ensures the traffic is blocked or routed to a controlled destination.
DNS sinkholing is especially effective for blocking malware trying to contact its C2 server or preventing data exfiltration.
Why not "DNS proxy" (Option A)?A DNS proxy is used to forward DNS queries from endpoints to an upstream DNS server. While it can be part of a network's DNS setup, it does not actively stop DNS-based threats.
Why not "Buffer overflow protection" (Option B)?Buffer overflow protection is a method used to prevent memory-related attacks, such as exploiting software vulnerabilities. It is unrelated to DNS-based threat prevention.
Why not "DNS tunneling" (Option C)?DNS tunneling is itself a type of DNS-based threat where attackers encode malicious traffic within DNS queries and responses. This option refers to the threat itself, not the method to stop it.
In which two locations can a Best Practice Assessment (BPA) report be generated for review by a customer? (Choose two.)
PANW Partner Portal
Customer Support Portal
AIOps
Strata Cloud Manager (SCM)
The Best Practice Assessment (BPA) report evaluates firewall and Panorama configurations against Palo Alto Networks' best practice recommendations. It provides actionable insights to improve the security posture of the deployment. BPA reports can be generated from the following locations:
Why "PANW Partner Portal" (Correct Answer A)?Partners with access to the Palo Alto Networks Partner Portal can generate BPA reports for customers as part of their service offerings. This allows partners to assess and demonstrate compliance with best practices.
Why "Customer Support Portal" (Correct Answer B)?Customers can log in to the Palo Alto Networks Customer Support Portal to generate their own BPA reports. This enables organizations to self-assess and improve their firewall configurations.
Why not "AIOps" (Option C)?While AIOps provides operational insights and best practice recommendations, it does not generate full BPA reports. BPA and AIOps are distinct tools within the Palo Alto Networks ecosystem.
Why not "Strata Cloud Manager (SCM)" (Option D)?Strata Cloud Manager is designed for managing multiple Palo Alto Networks cloud-delivered services and NGFWs but does not currently support generating BPA reports. BPA is limited to the Partner Portal and Customer Support Portal.
As a team plans for a meeting with a new customer in one week, the account manager prepares to pitch Zero Trust. The notes provided to the systems engineer (SE) in preparation for the meeting read: "Customer is struggling with security as they move to cloud apps and remote users." What should the SE recommend to the team in preparation for the meeting?
Lead with the account manager pitching Zero Trust with the aim of convincing the customer that the team's approach meets their needs.
Design discovery questions to validate customer challenges with identity, devices, data, and access for applications and remote users.
Lead with a product demonstration of GlobalProtect connecting to an NGFW and Prisma Access, and have SaaS security enabled.
Guide the account manager into recommending Prisma SASE at the customer meeting to solve the issues raised.
When preparing for a customer meeting, it’s important to understand their specific challenges and align solutions accordingly. The notes suggest that the customer is facing difficulties securing their cloud apps and remote users, which are core areas addressed by Palo Alto Networks’ Zero Trust and SASE solutions. However, jumping directly into a pitch or product demonstration without validating the customer's specific challenges may fail to build trust or fully address their needs.
Option A:Leading with a pre-structured pitch about Zero Trust principles may not resonate with the customer if their challenges are not fully understood first. The team needs to gather insights into the customer's security pain points before presenting a solution.
Option B (Correct):Discovery questionsare a critical step in the sales process, especially when addressing complex topics like Zero Trust. By designing targeted questions about the customer’s challenges with identity, devices, data, and access, the SE can identify specific pain points. These insights can then be used to tailor a Zero Trust strategy that directly addresses the customer’s concerns. This approach ensures the meeting is customer-focused and demonstrates that the SE understands their unique needs.
Option C:While a product demonstration of GlobalProtect, Prisma Access, and SaaS security is valuable, it should come after discovery. Presenting products prematurely may seem like a generic sales pitch and could fail to address the customer’s actual challenges.
Option D:Prisma SASEis an excellent solution for addressing cloud security and remote user challenges, but recommending it without first understanding the customer’s specific needs may undermine trust. This step should follow after discovery and validation of the customer’s pain points.
Examples of Discovery Questions:
What are your primary security challenges with remote users and cloud applications?
Are you currently able to enforce consistent security policies across your hybrid environment?
How do you handle identity verification and access control for remote users?
What level of visibility do you have into traffic to and from your cloud applications?
References:
Palo Alto Networks Zero Trust Overview: https://www.paloaltonetworks.com/zero-trust
Best Practices for Customer Discovery: https://docs.paloaltonetworks.com/sales-playbooks
TESTED 18 Jan 2025
Copyright © 2014-2025 DumpsTool. All Rights Reserved