Black Friday Sale - Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70dumps

Data-Engineer-Associate Questions and Answers

Question # 6

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

A.

git diff branchB master

git commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Full Access
Question # 7

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Full Access
Question # 8

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Full Access
Question # 9

A data engineer maintains a materialized view that is based on an Amazon Redshift database. The view has a column named load_date that stores the date when each row was loaded.

The data engineer needs to reclaim database storage space by deleting all the rows from the materialized view.

Which command will reclaim the MOST database storage space?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 10

A company implements a data mesh that has a central governance account. The company needs to catalog all data in the governance account. The governance account uses AWS Lake Formation to centrally share data and grant access permissions.

The company has created a new data product that includes a group of Amazon Redshift Serverless tables. A data engineer needs to share the data product with a marketing team. The marketing team must have access to only a subset of columns. The data engineer needs to share the same data product with a compliance team. The compliance team must have access to a different subset of columns than the marketing team needs access to.

Which combination of steps should the data engineer take to meet these requirements? (Select TWO.)

A.

Create views of the tables that need to be shared. Include only the required columns.

B.

Create an Amazon Redshift data than that includes the tables that need to be shared.

C.

Create an Amazon Redshift managed VPC endpoint in the marketing team's account. Grant the marketing team access to the views.

D.

Share the Amazon Redshift data share to the Lake Formation catalog in the governance account.

E.

Share the Amazon Redshift data share to the Amazon Redshift Serverless workgroup in the marketing team's account.

Full Access
Question # 11

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Full Access
Question # 12

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Full Access
Question # 13

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

Full Access
Question # 14

A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.

The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.

Which solution will meet these requirements with the LEAST development effort?

A.

Use AWS Glue Python jobs to read and transform the CSV files.

B.

Use an AWS Glue custom crawler to read and transform the CSV files.

C.

Use an AWS Glue workflow to build a set of jobs to crawl and transform the CSV files.

D.

Use AWS Glue DataBrew recipes to read and transform the CSV files.

Full Access
Question # 15

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Full Access
Question # 16

A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Amazon Athena to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

B.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Redshift Spectrum to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

C.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use AWS Glue jobs to transform data that is in JSON format to Apache Parquet or .csv format. Store the transformed data in an S3 bucket. Use Amazon Athena to query the original and transformed data from the S3 bucket.

D.

Use AWS Lake Formation to create a data lake. Use Lake Formation jobs to transform the data from all data sources to Apache Parquet format. Store the transformed data in an S3 bucket. Use Amazon Athena or Redshift Spectrum to query the data.

Full Access
Question # 17

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Full Access
Question # 18

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Full Access
Question # 19

A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.

The company wants to minimize the effort and time required to incorporate third-party datasets.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use API calls to access and integrate third-party datasets from AWS Data Exchange.

B.

Use API calls to access and integrate third-party datasets from AWS

C.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories.

D.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR).

Full Access
Question # 20

A data engineer needs to join data from multiple sources to perform a one-time analysis job. The data is stored in Amazon DynamoDB, Amazon RDS, Amazon Redshift, and Amazon S3.

Which solution will meet this requirement MOST cost-effectively?

A.

Use an Amazon EMR provisioned cluster to read from all sources. Use Apache Spark to join the data and perform the analysis.

B.

Copy the data from DynamoDB, Amazon RDS, and Amazon Redshift into Amazon S3. Run Amazon Athena queries directly on the S3 files.

C.

Use Amazon Athena Federated Query to join the data from all data sources.

D.

Use Redshift Spectrum to query data from DynamoDB, Amazon RDS, and Amazon S3 directly from Redshift.

Full Access
Question # 21

A data engineer wants to orchestrate a set of extract, transform, and load (ETL) jobs that run on AWS. The ETL jobs contain tasks that must run Apache Spark jobs on Amazon EMR, make API calls to Salesforce, and load data into Amazon Redshift.

The ETL jobs need to handle failures and retries automatically. The data engineer needs to use Python to orchestrate the jobs.

Which service will meet these requirements?

A.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

B.

AWS Step Functions

C.

AWS Glue

D.

Amazon EventBridge

Full Access
Question # 22

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Full Access
Question # 23

A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.

Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use Hadoop Distributed File System (HDFS) as a persistent data store.

B.

Use Amazon S3 as a persistent data store.

C.

Use x86-based instances for core nodes and task nodes.

D.

Use Graviton instances for core nodes and task nodes.

E.

Use Spot Instances for all primary nodes.

Full Access
Question # 24

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.

Full Access
Question # 25

A company stores details about transactions in an Amazon S3 bucket. The company wants to log all writes to the S3 bucket into another S3 bucket that is in the same AWS Region.

Which solution will meet this requirement with the LEAST operational effort?

A.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the event to Amazon Kinesis Data Firehose. Configure Kinesis Data Firehose to write the event to the logs S3 bucket.

B.

Create a trail of management events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

C.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the events to the logs S3 bucket.

D.

Create a trail of data events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

Full Access
Question # 26

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

Full Access
Question # 27

A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.

Which solution will meet these requirements in the MOST operationally efficient way?

A.

Create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create an AWS Glue job that selects the data directly from the view and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

B.

Schedule SQL Server Agent to run a daily SQL query that selects the desired data elements from the EC2 instance-based SQL Server databases. Configure the query to direct the output .csv objects to an S3 bucket. Create an S3 event that invokes an AWS Lambda function to transform the output format from .csv to Parquet.

C.

Use a SQL query to create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create and run an AWS Glue crawler to read the view. Create an AWS Glue job that retrieves the data and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

D.

Create an AWS Lambda function that queries the EC2 instance-based databases by using Java Database Connectivity (JDBC). Configure the Lambda function to retrieve the required data, transform the data into Parquet format, and transfer the data into an S3 bucket. Use Amazon EventBridge to schedule the Lambda function to run every day.

Full Access
Question # 28

A company is building a data stream processing application. The application runs in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application stores processed data in an Amazon DynamoDB table.

The company needs the application containers in the EKS cluster to have secure access to the DynamoDB table. The company does not want to embed AWS credentials in the containers.

Which solution will meet these requirements?

A.

Store the AWS credentials in an Amazon S3 bucket. Grant the EKS containers access to the S3 bucket to retrieve the credentials.

B.

Attach an IAM role to the EKS worker nodes. Grant the IAM role access to DynamoDB. Use the IAM role to set up IAM roles service accounts (IRSA) functionality.

C.

Create an IAM user that has an access key to access the DynamoDB table. Use environment variables in the EKS containers to store the IAM user access key data.

D.

Create an IAM user that has an access key to access the DynamoDB table. Use Kubernetes secrets that are mounted in a volume of the EKS cluster nodes to store the user access key data.

Full Access
Question # 29

A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.

A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.

The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.

Which solution will meet these requirements?

A.

Change the sort key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

B.

Change the distribution key to the table column that has the largest dimension.

C.

Upgrade the reserved node from ra3.4xlarqe to ra3.16xlarqe.

D.

Change the primary key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

Full Access
Question # 30

A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.

Which solution will meet these requirements with the LEAST effort?

A.

Use an AWS CloudHSM cluster to store the encryption keys. Configure the process that writes to Amazon S3 to make calls to CloudHSM to encrypt and decrypt the objects. Deploy an IAM policy that restricts access to the CloudHSM cluster.

B.

Use server-side encryption with customer-provided keys (SSE-C) to encrypt the objects that contain customer information. Restrict access to the keys that encrypt the objects.

C.

Use server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the KMS keys that encrypt the objects.

D.

Use server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the Amazon S3 managed keys that encrypt the objects.

Full Access
Question # 31

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Full Access
Question # 32

A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.

Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)

A.

Configure AWS Glue triggers to run the ETL jobs even/ hour.

B.

Use AWS Glue DataBrewto clean and prepare the data for analytics.

C.

Use AWS Lambda functions to schedule and run the ETL jobs even/ hour.

D.

Use AWS Glue connections to establish connectivity between the data sources and Amazon Redshift.

E.

Use the Redshift Data API to load transformed data into Amazon Redshift.

Full Access
Question # 33

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Full Access
Question # 34

A data engineer is launching an Amazon EMR duster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.

The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.

Which solution will meet these requirements?

A.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Create a second security configuration. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach both security configurations to the cluster.

B.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for local disk encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

C.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

D.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach the security configuration to the cluster.

Full Access
Question # 35

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Full Access
Question # 36

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Full Access
Question # 37

A data engineer must orchestrate a data pipeline that consists of one AWS Lambda function and one AWS Glue job. The solution must integrate with AWS services.

Which solution will meet these requirements with the LEAST management overhead?

A.

Use an AWS Step Functions workflow that includes a state machine. Configure the state machine to run the Lambda function and then the AWS Glue job.

B.

Use an Apache Airflow workflow that is deployed on an Amazon EC2 instance. Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

C.

Use an AWS Glue workflow to run the Lambda function and then the AWS Glue job.

D.

Use an Apache Airflow workflow that is deployed on Amazon Elastic Kubernetes Service (Amazon EKS). Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

Full Access
Question # 38

A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.

The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.

The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.

Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)

A.

Configure the third-party application to create the files in a columnar format.

B.

Develop an AWS Glue ETL job to convert the multiple daily CSV files to one file for each day.

C.

Partition the order data in the S3 bucket based on order date.

D.

Configure the third-party application to create the files in JSON format.

E.

Load the JSON data into the Amazon Redshift table in a SUPER type column.

Full Access
Question # 39

A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.

Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.

Which combination of troubleshooting steps should the data engineer take? (Select TWO.)

A.

Confirm that Athena is pointing to the correct Amazon S3 location.

B.

Increase the query timeout duration.

C.

Use the MSCK REPAIR TABLE command.

D.

Restart Athena.

E.

Delete and recreate the problematic Athena table.

Full Access