Summer Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpt65

Data-Engineer-Associate Questions and Answers

Question # 6

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Full Access
Question # 7

A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.

The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.

The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.

Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)

A.

Configure the third-party application to create the files in a columnar format.

B.

Develop an AWS Glue ETL job to convert the multiple daily CSV files to one file for each day.

C.

Partition the order data in the S3 bucket based on order date.

D.

Configure the third-party application to create the files in JSON format.

E.

Load the JSON data into the Amazon Redshift table in a SUPER type column.

Full Access
Question # 8

A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.

Which query will meet this requirement?

A.

CREATE TABLE new_table LIKE old_table;

B.

CREATE TABLE new_table AS SELECT * FROM old_table WITH NO DATA;

C.

CREATE TABLE new_table AS SELECT * FROM old_table;

D.

CREATE TABLE new_table AS SELECT * FROM old_table WHERE 1=1;

Full Access
Question # 9

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Full Access
Question # 10

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

Full Access
Question # 11

A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.

Which solution will give the company the ability to use Spark to access Athena?

A.

Athena query settings

B.

Athena workgroup

C.

Athena data source

D.

Athena query editor

Full Access
Question # 12

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analyticalreporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

Full Access
Question # 13

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

Full Access
Question # 14

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Full Access
Question # 15

A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.

The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.

Which change should the engineer make to gain access to SageMaker Studio?

A.

Add the AWSGlueServiceRole managed policy to the data engineer's IAM user.

B.

Add a policy to the data engineer's IAM user that includes the sts:AssumeRole action for the AWS Glue and SageMaker service principals in the trust policy.

C.

Add the AmazonSageMakerFullAccess managed policy to the data engineer's IAM user.

D.

Add a policy to the data engineer's IAM user that allows the sts:AddAssociation action for the AWS Glue and SageMaker service principals in the trust policy.

Full Access
Question # 16

A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.

Which data pipeline solutions will meet these requirements? (Choose two.)

A.

Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

B.

Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

C.

Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.

D.

Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

E.

Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.

Full Access
Question # 17

A manufacturing company wants to collect data from sensors. A data engineer needs to implement a solution that ingests sensor data in near real time.

The solution must store the data to a persistent data store. The solution must store the data in nested JSON format. The company must have the ability to query from the data store with a latency of less than 10 milliseconds.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use a self-hosted Apache Kafka cluster to capture the sensor data. Store the data in Amazon S3 for querying.

B.

Use AWS Lambda to process the sensor data. Store the data in Amazon S3 for querying.

C.

Use Amazon Kinesis Data Streams to capture the sensor data. Store the data in Amazon DynamoDB for querying.

D.

Use Amazon Simple Queue Service (Amazon SQS) to buffer incoming sensor data. Use AWS Glue to store the data in Amazon RDS for querying.

Full Access
Question # 18

A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.

The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.

Which solution will meet these requirements with the LEAST development effort?

A.

Use AWS Glue Python jobs to read and transform the CSV files.

B.

Use an AWS Glue custom crawler to read and transform the CSV files.

C.

Use an AWS Glue workflow to build a set of jobs to crawl and transform the CSV files.

D.

Use AWS Glue DataBrew recipes to read and transform the CSV files.

Full Access
Question # 19

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

Full Access
Question # 20

A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.

The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.

Which solution will meet these requirements?

A.

Keep using the EVEN distribution style for all tables. Specify primary and foreign keys for all tables.

B.

Use the ALL distribution style for large tables. Specify primary and foreign keys for all tables.

C.

Use the ALL distribution style for rarely updated small tables. Specify primary and foreign keys for all tables.

D.

Specify a combination of distribution, sort, and partition keys for all tables.

Full Access
Question # 21

A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.

Which solution will meet these requirements with the LEAST ongoing maintenance?

A.

Use the DynamoDB TTL feature to automatically expire data based on timestamps.

B.

Configure a scheduled Amazon EventBridge rule to invoke an AWS Lambda function to check for data that is older than 1 month. Configure the Lambda function to delete old data.

C.

Configure a stream on the DynamoDB table to invoke an AWS Lambda function. Configure the Lambda function to delete data in the table that is older than 1 month.

D.

Use an AWS Lambda function to periodically scan the DynamoDB table for data that is older than 1 month. Configure the Lambda function to delete old data.

Full Access
Question # 22

A company needs to partition the Amazon S3 storage that the company uses for a data lake. The partitioning will use a path of the S3 object keys in the following format: s3://bucket/prefix/year=2023/month=01/day=01.

A data engineer must ensure that the AWS Glue Data Catalog synchronizes with the S3 storage when the company adds new partitions to the bucket.

Which solution will meet these requirements with the LEAST latency?

A.

Schedule an AWS Glue crawler to run every morning.

B.

Manually run the AWS Glue CreatePartition API twice each day.

C.

Use code that writes data to Amazon S3 to invoke the Boto3 AWS Glue create partition API call.

D.

Run the MSCK REPAIR TABLE command from the AWS Glue console.

Full Access
Question # 23

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Full Access
Question # 24

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

Full Access
Question # 25

A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.

A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Store self-managed certificates on the EC2 instances.

B.

Use AWS Certificate Manager (ACM).

C.

Implement custom automation scripts in AWS Secrets Manager.

D.

Use Amazon Elastic Container Service (Amazon ECS) Service Connect.

Full Access
Question # 26

A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.

The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.

Which solution will meet these requirements?

A.

Use AWS Config rules to detect violations of the data access policy. Set up compliance alarms.

B.

Use Amazon CloudWatch metrics to gather object-level metrics. Set up CloudWatch alarms.

C.

Use AWS CloudTrail to track object-level events for the S3 bucket. Forward events to Amazon CloudWatch to set up CloudWatch alarms.

D.

Use Amazon S3 server access logs to monitor access to the bucket. Forward the access logs to an Amazon CloudWatch log group. Use metric filters on the log group to set up CloudWatch alarms.

Full Access
Question # 27

A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.

Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.

Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)

A.

The producer experienced network-related timeouts.

B.

The stream's value for the IteratorAgeMilliseconds metric was too high.

C.

There was a change in the number of shards, record processors, or both.

D.

The AggregationEnabled configuration property was set to true.

E.

The max_records configuration property was set to a number that was too high.

Full Access
Question # 28

A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.

Which AWS service or feature will meet these requirements MOST cost-effectively?

A.

AWS Step Functions

B.

AWS Glue workflows

C.

AWS Glue Studio

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

Full Access
Question # 29

A data engineer is building a data pipeline. A large data file is uploaded to an Amazon S3 bucket once each day at unpredictable times. An AWS Glue workflow uses hundreds of workers to process the fileand load the data into Amazon Redshift. The company wants to process the file as quickly as possible.

Which solution will meet these requirements?

A.

Create an on-demand AWS Glue trigger to start the workflow. Create an AWS Lambda function that runs every 15 minutes to check the S3 bucket for the daily file. Configure the function to start the AWS Glue workflow if the file is present.

B.

Create an event-based AWS Glue trigger to start the workflow. Configure Amazon S3 to log events to AWS CloudTrail. Create a rule in Amazon EventBridge to forward PutObject events to the AWS Glue trigger.

C.

Create a scheduled AWS Glue trigger to start the workflow. Create a cron job that runs the AWS Glue job every 15 minutes. Set up the AWS Glue job to check the S3 bucket for the daily file. Configure the job to stop if the file is not present.

D.

Create an on-demand AWS Glue trigger to start the workflow. Create an AWS Database Migration Service (AWS DMS) migration task. Set the DMS source as the S3 bucket. Set the target endpoint as the AWS Glue workflow.

Full Access
Question # 30

A company wants to analyze sales records that the company stores in a MySQL database. The company wants to correlate the records with sales opportunities identified by Salesforce.

The company receives 2 GB erf sales records every day. The company has 100 GB of identified sales opportunities. A data engineer needs to develop a process that will analyze and correlate sales records and sales opportunities. The process must run once each night.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to fetch both datasets. Use AWS Lambda functions to correlate the datasets. Use AWS Step Functions to orchestrate the process.

B.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with the sales opportunities. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the process.

C.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with sales opportunities. Use AWS Step Functions to orchestrate the process.

D.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use Amazon Kinesis Data Streams to fetch sales records from the MySQL database. Use Amazon Managed Service for Apache Flink to correlate the datasets. Use AWS Step Functions to orchestrate the process.

Full Access
Question # 31

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

Full Access
Question # 32

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.

Full Access
Question # 33

A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.

The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.

What is the likely reason the AWS Glue job is reprocessing the files?

A.

The AWS Glue job does not have the s3:GetObjectAcl permission that is required for bookmarks to work correctly.

B.

The maximum concurrency for the AWS Glue job is set to 1.

C.

The data engineer incorrectly specified an older version of AWS Glue for the Glue job.

D.

The AWS Glue job does not have a required commit statement.

Full Access
Question # 34

A company uses AWS Glue Data Catalog to index data that is uploaded to an Amazon S3 bucket every day. The company uses a daily batch processes in an extract, transform, and load (ETL) pipeline to upload data from external sources into the S3 bucket.

The company runs a daily report on the S3 data. Some days, the company runs the report before all the daily data has been uploaded to the S3 bucket. A data engineer must be able to send a message that identifies any incomplete data to an existing Amazon Simple Notification Service (Amazon SNS) topic.

Which solution will meet this requirement with the LEAST operational overhead?

A.

Create data quality checks for the source datasets that the daily reports use. Create a new AWS managed Apache Airflow cluster. Run the data quality checks by using Airflow tasks that run data quality queries on the columns data type and the presence of nullvalues. Configure Airflow Directed Acyclic Graphs (DAGs) to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

B.

Create data quality checks on the source datasets that the daily reports use. Create a new Amazon EMR cluster. Use Apache Spark SQL to create Apache Spark jobs in the EMR cluster that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow. Configure the workflow to send an email notification that informs the data engineer about the incomplete da

C.

Create data quality checks on the source datasets that the daily reports use. Create data quality actions by using AWS Glue workflows to confirm the completeness and consistency of the datasets. Configure the data quality actions to create an event in Amazon EventBridge if a dataset is incomplete. Configure EventBridge to send the event that informs the data engineer about the incomplete datasets to the Amazon SNS topic.

D.

Create AWS Lambda functions that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow that runs the Lambda functions. Configure the Step Functions workflow to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

Full Access
Question # 35

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

A.

git diff branchB master

git commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Full Access
Question # 36

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

Full Access
Question # 37

A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.

The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.

Which solution will meet this requirement with the LEAST effort?

A.

Create an Apache Sqoop job in Amazon EMR to read the data from the Oracle database. Configure the Sqoop job to write the data to Amazon S3 in Parquet format.

B.

Create an AWS Glue connection to the Oracle database. Create an AWS Glue bookmark job to ingest the data incrementally and to write the data to Amazon S3 in Parquet format.

C.

Create an AWS Database Migration Service (AWS DMS) task for ongoing replication. Set the Oracle database as the source. Set Amazon S3 as the target. Configure the task to write the data in Parquet format.

D.

Create an Oracle database in Amazon RDS. Use AWS Database Migration Service (AWS DMS) to migrate the on-premises Oracle database to Amazon RDS. Configure triggers on the tables to invoke AWS Lambda functions to write changed records to Amazon S3 in Parquet format.

Full Access
Question # 38

A data engineer uses Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to run data pipelines in an AWS account. A workflow recently failed to run. The data engineer needs to use Apache Airflow logs to diagnose the failure of the workflow. Which log type should the data engineer use to diagnose the cause of the failure?

A.

YourEnvironmentName-WebServer

B.

YourEnvironmentName-Scheduler

C.

YourEnvironmentName-DAGProcessing

D.

YourEnvironmentName-Task

Full Access
Question # 39

A financial company recently added more features to its mobile app. The new features required the company to create a new topic in an existing Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster.

A few days after the company added the new topic, Amazon CloudWatch raised an alarm on the RootDiskUsed metric for the MSK cluster.

How should the company address the CloudWatch alarm?

A.

Expand the storage of the MSK broker. Configure the MSK cluster storage to expand automatically.

B.

Expand the storage of the Apache ZooKeeper nodes.

C.

Update the MSK broker instance to a larger instance type. Restart the MSK cluster.

D.

Specify the Target-Volume-in-GiB parameter for the existing topic.

Full Access
Question # 40

A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.

Which SQL statement should the data engineer use to meet this requirement?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 41

A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.

An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.

A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.

Which combination of steps will meet these requirements? (Select TWO.)

A.

Configure the Amazon Redshift Federated Query feature to query live transactional data that is in the PostgreSQL database.

B.

Configure Amazon Redshift Spectrum to query live transactional data that is in the PostgreSQL database.

C.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 by using the UNLOAD command. Delete the old data from the Redshift cluster. Configure Amazon Redshift Spectrum to access historical data in Amazon S3.

D.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 Glacier Flexible Retrieval by using the UNLOAD command. Delete the old data from the Redshift duster. Configure Redshift Spectrum to access historical data from S3 Glacier Flexible Retrieval.

E.

Create a materialized view in Amazon Redshift that combines live, current, and historical data from different sources.

Full Access
Question # 42

A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.

A data engineer wants to use S3 Object Lock to secure the data.

Which solution will meet these requirements?

A.

Enable governance mode on the S3 bucket. Use a default retention period of 7 years.

B.

Enable compliance mode on the S3 bucket. Use a default retention period of 7 years.

C.

Place a legal hold on individual objects in the S3 bucket. Set the retention period to 7 years.

D.

Set the retention period for individual objects in the S3 bucket to 7 years.

Full Access
Question # 43

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

Full Access
Question # 44

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Full Access
Question # 45

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

Full Access
Question # 46

A data engineer uses Amazon Kinesis Data Streams to ingest and process records that contain user behavior data from an application every day.

The data engineer notices that the data stream is experiencing throttling because hot shards receive much more data than other shards in the data stream.

How should the data engineer resolve the throttling issue?

A.

Use a random partition key to distribute the ingested records.

B.

Increase the number of shards in the data stream. Distribute the records across the shards.

C.

Limit the number of records that are sent each second by the producer to match the capacity of the stream.

D.

Decrease the size of the records that the producer sends to match the capacity of the stream.

Full Access
Question # 47

A company stores server logs in an Amazon 53 bucket. The company needs to keep the logs for 1 year. The logs are not required after 1 year.

A data engineer needs a solution to automatically delete logs that are older than 1 year.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Define an S3 Lifecycle configuration to delete the logs after 1 year.

B.

Create an AWS Lambda function to delete the logs after 1 year.

C.

Schedule a cron job on an Amazon EC2 instance to delete the logs after 1 year.

D.

Configure an AWS Step Functions state machine to delete the logs after 1 year.

Full Access
Question # 48

A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.

The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.

Which solution will meet these requirements with the LOWEST latency?

A.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

B.

Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard.

C.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Create a new Data Firehose delivery stream to publish data directly to an Amazon Timestream database. Use the Timestream database as a source to create an Amazon QuickSight dashboard.

D.

Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

Full Access
Question # 49

A company plans to use Amazon Kinesis Data Firehose to store data in Amazon S3. The source data consists of 2 MB csv files. The company must convert the .csv files to JSON format. The company must store the files in Apache Parquet format.

Which solution will meet these requirements with the LEAST development effort?

A.

Use Kinesis Data Firehose to convert the csv files to JSON. Use an AWS Lambda function to store the files in Parquet format.

B.

Use Kinesis Data Firehose to convert the csv files to JSON and to store the files in Parquet format.

C.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON and stores the files in Parquet format.

D.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON. Use Kinesis Data Firehose to store the files in Parquet format.

Full Access
Question # 50

A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.

A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.

Which solution will meet this requirement?

A.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

B.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

C.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

D.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

Full Access
Question # 51

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

Full Access
Question # 52

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

Full Access